Hydrography Major Project

Project Manager - Richard Edwing

March 22, 2007

Hydrography Major Project Contents

- Major Project process overview
- Hydrography Major Project Status
 - Key Decision Point 1
 - Key Decision Point 2 Approach

HSRP Role

Hydrography Major Project Process Overview

Requirements Management

- New NOAA Administrative Order established (NAO 216-108) in late 2005.
- Established requirements validation authorities.
- Established major projects process.
- 13 major projects identified via NOAA Decision Memorandum.
- Councils & project managers assigned.

Major Project	Planned Funding FY07 DOC Submit	Council/Board	Project Manager
Hydrography (data collection, research, and	\$245M (FY 07 – FY 11)	Ocean	Rich Edwing
development)			- 34 - 34 - 37 - 30 - 44 - 31

Hydrography Major Project Process Overview

Characteristics of major projects

- Require significant resources, high risk, external visibility.
- Follow applicable DOC & NOAA acquisition and management guidelines.
- Be approved by the NOAA Deputy Under Secretary.
- Have an assigned single manager.
- Be assigned to a Council for review at Key Decision Points.

Hydrography Major Project Process Overview

NOAA's Project Managers will:

- Assemble a project team.
- Address all functional & operational requirements over the project life cycle.
- Ensure the project satisfies the customer & NOAA.
- Communicate project status internally and externally.
- Schedule Key Decision Point project reviews.

Key Decision Points

KDP 1: Needs Identification and Definition

- What is the need? -- Description
- What are our existing capabilities and what is the gap?
- Where did this need come from? How well is it documented?
- Who are key customers and stakeholders?
- How does need link to the NOAA mission and strategic plan and other validated requirements?
- Benefits and performance impacts of meeting this need?
- Recommended priority
- Rough Order of Magnitude Cost
- Program and Funding Objectives
- Policy and Budget Constraints

KDP 2: Solution Alternatives Identification

- How will alternatives for meeting requirement be investigated
- What alternatives were evaluated developed and analyzed?
- How were alternatives evaluated?
- Provide cost/benefit analysis of alternatives
- Cost, Schedule, Performance
- How much will alternative investigation, development and analysis cost?
- What is proposed solution? Success criteria?
- What is the Concept of Operations?
- Identify risks and mitigations
- Was solution coordinated internal and external to NOAA?
- Is this solution compliant with NOAA policies and standards?
- How will solution impact current Programs?
- How does solution leverage existing investments?
- How will it be managed who is accountable?
- Investment Strategy

KDP 3: Solution Selection

- Investment Strategy
- Life Cycle Cost Estimates
- User Impact Assessments
- Tradeoff Analyses
- Investment Budgets

KDP 4: Acquisition/Implementation Approval

- Cost
- Schedule
- Performance
- Configuration Management

Key Decision Point 1:

- Needs Identification and Definition:
 - requirements validation;
 - project scoping;
 - context.
- Endorsed by NOAA Ocean Council:
 - Technical oversight group established.
- Presented to NOAA Executive Panel:
 - Approval pending.

Hydrography Major Project

Project Status

Key Decision Point 1 Highlights:

- Mission requirement validation:
 - 3.4M snm, Exclusive Economic Zone;
 - 510K snm, navigationally significant areas;
 - 10,000 snm, annual target.
- Mission shortfall identified:
 - ~ 7,000 snm annually.
- Rough Order of Magnitude (ROM) cost provided for one scenario:
 - mixed asset approach.

Key Decision Point 2 Approach

- Alternatives
- Building blocks
- Economic analyses

IC SERVICES

OGRA

PΗ

• Proposed investment strategy

R

1 – Identify KDP 2 alternatives to address shortfall (gap)

Foundation: Core expertise must be maintained.

- a) Shortfall addressed through expanded contract services.
- b) Shortfall addressed through mix of expanded inhouse capacity and contract services.
- c) Technology infusion efficiencies impact on inhouse capacity and contract services.

2 - Establish KDP 2 Building Blocks

GR

- Assumptions/constraints document all major assumptions used to establish and project cost and performance.
- Cost Basis establish average per unit (square nautical mile) cost.
- Performance establish average level of production associated with a specific capacity.

 $C \in S$

к

• Schedule – projected on an executable basis.

SERVI

3 - Conduct KDP 2 Economic Analyses

- US Navy Economic Handbook.
- OMB Circular A-76 (direct and indirect costs).
- Five year (FY10-14) window for operational cost projections, ten year (FY10-19) for capital costs/life cycle requirements.
- Cost, schedule, performance for technology infusion possible within FY10-FY14, risk mitigation for five year over the horizon technology.
- Risk mitigation for Integrated Ocean and Coastal Mapping impacts.

4 - Identify proposed KDP 2 NOAA Investment Strategy

- Cost effective.
- Executable.
- Minimize risk.
- Maximize Administration, Congressional and Stakeholder support.

Building blocks - Direct Data Acquisition

- Contract services:
 - variable cost/performance by survey type;
 - variable cost/performance by survey location;
 - includes LiDAR.
- In-house data acquisition with existing vessels:
 - four in-house: variable costs/performance;
 - required to maintain core expertise.
- In-house data acquisition with new vessels:
 - -NOAA survey vessel proposed in FY09 PPBES;
 - additional vessels have variable costs/performance.

Building blocks - Direct Data Acquisition

Technology infusion:

- Autonomous Underwater Vehicles: CTD, sidescan, multibeam;
- Moving vessel profilers.

Building blocks - Data Acquisition Support

Survey planning/contract management/data management. Tide control (tidal zoning/tide gaging).

Building blocks – Human Capital

Complementary component to building blocks. Cuts across all building blocks.

Hydrography Major Project HSRP Role

- External review required by Major Project process
- HSRP has already provided some foundational work
- Draft KDP 2 review requested.

