BUILDING DESIGN FOR HOMELAND SECURITY

Unit IV Vulnerability Assessment

Vulnerability

Any weakness that can be exploited by an aggressor or, in a non-terrorist threat environment, make an asset susceptible to hazard damage

Unit Objectives

Explain what constitutes a vulnerability.

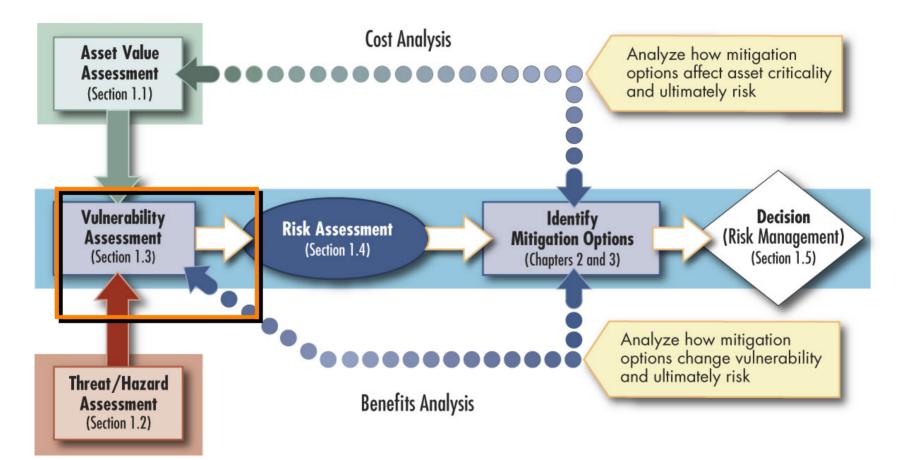
Identify vulnerabilities using the Building Vulnerability Assessment Checklist.

Understand that an identified vulnerability may indicate that an asset:

- is vulnerable to more than one threat or hazard;
- and that mitigation measures may reduce vulnerability to one or more threats or hazards.

Provide a numerical rating for the vulnerability and justify the basis for the rating.

Vulnerability Assessment


Identify site and building systems design issues

Evaluate design issues against type and level of threat

Determine level of protection sought for each mitigation measure against each threat

Assessment Flow Chart

FEMA

FEMA 426, Figure 1-3: The Assessment Process Model, p. 1-5

Identifying Vulnerabilities

Multidisciplinary Team

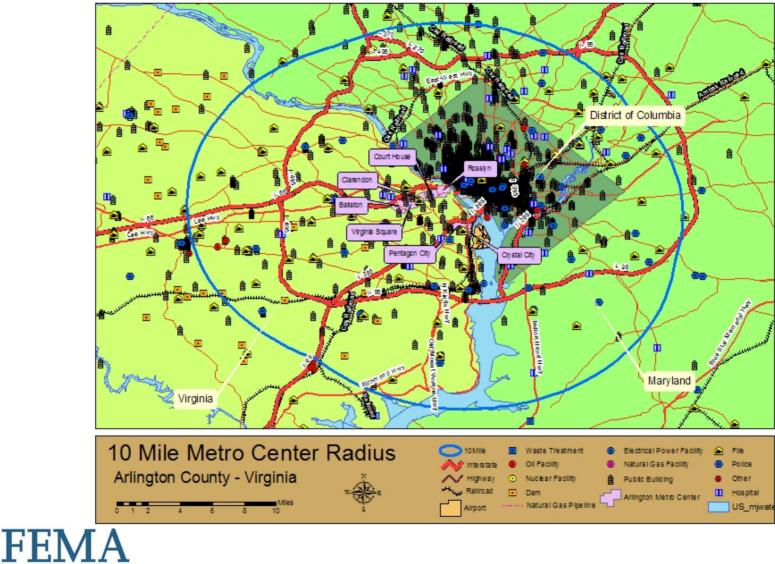
- Engineers
- Architects
- Security specialists
- Subject matter experts
- Outside experts if necessary

Vulnerability Assessment Preparation

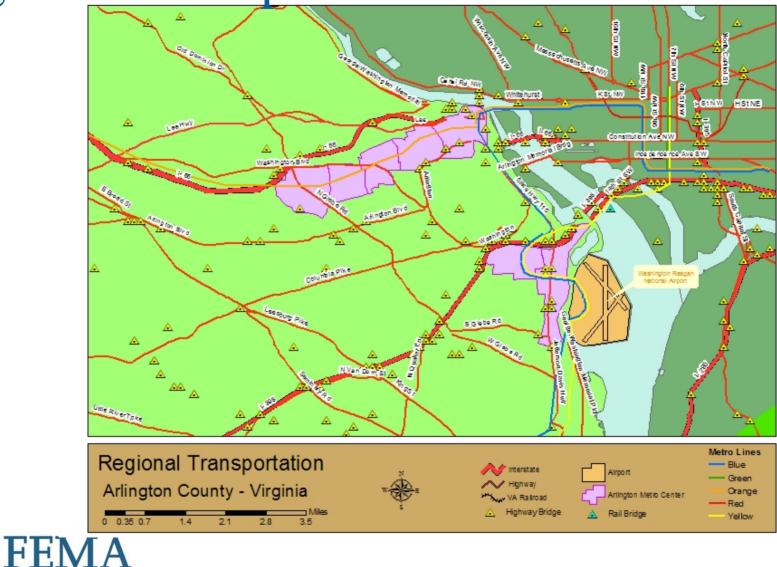
Coordinate with the building stakeholders:

- Site and Building Plans
- Utilities
- Emergency Plans (shelter, evacuation)
- Interview schedules
- Escorts for building access

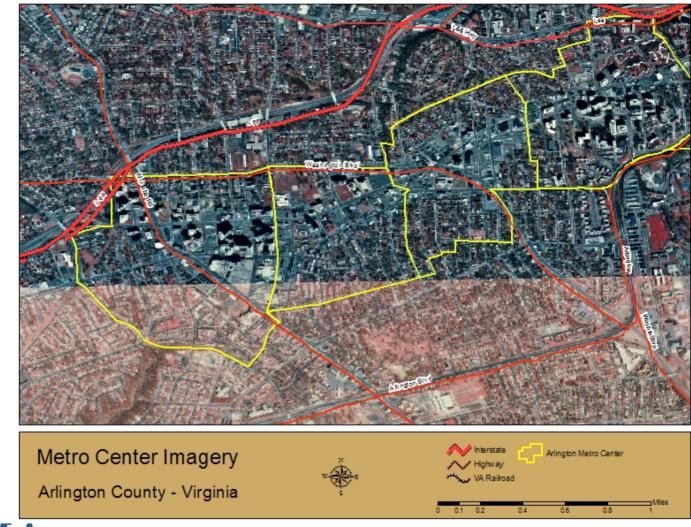
Assessment GIS Portfolio



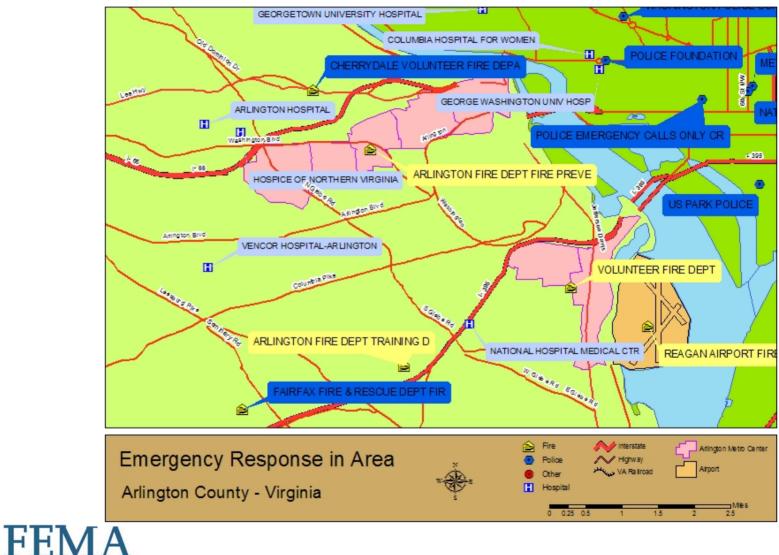
Arlington County - Virginia



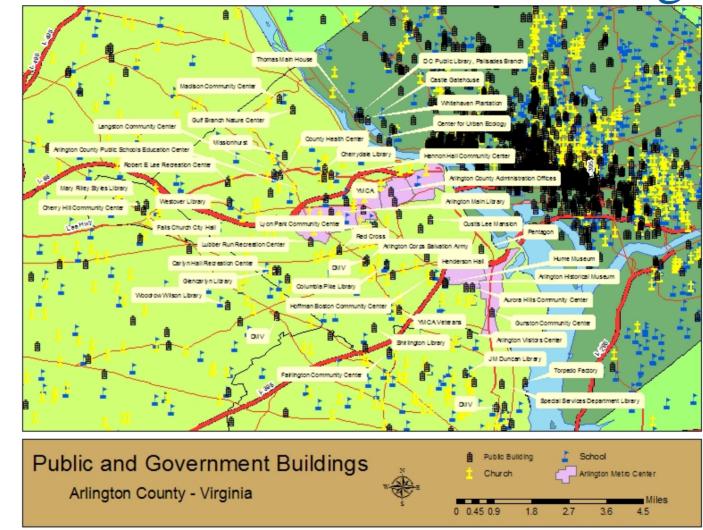
10-Mile Radius



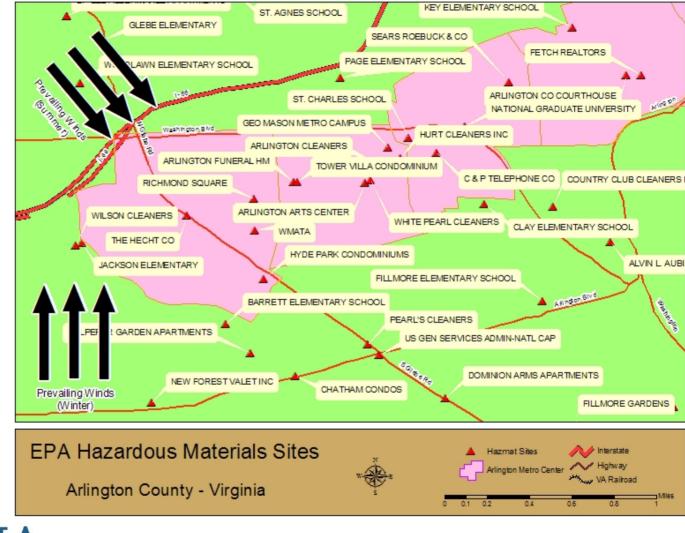
Regional Transportation



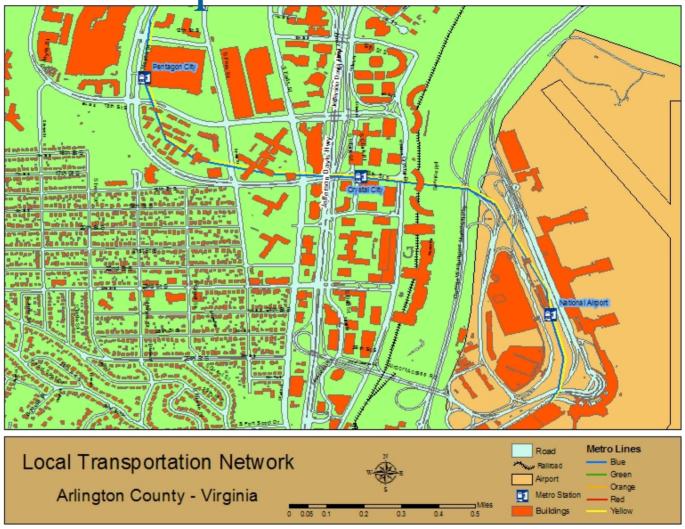
Metro Center Imagery



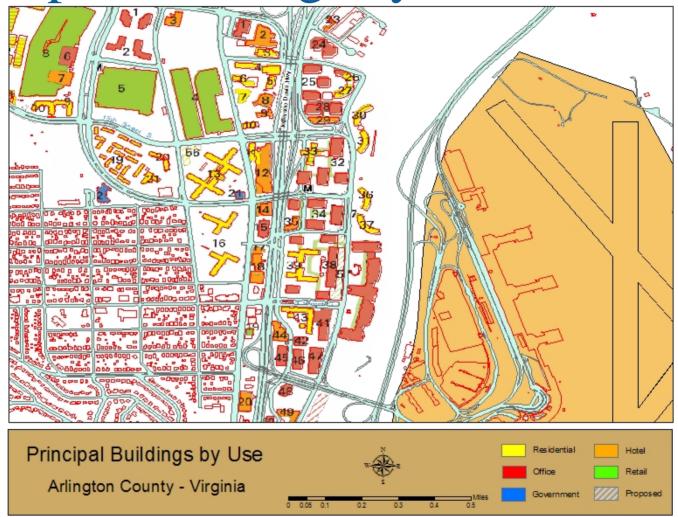
Site Emergency Response



Site Public and Government Buildings



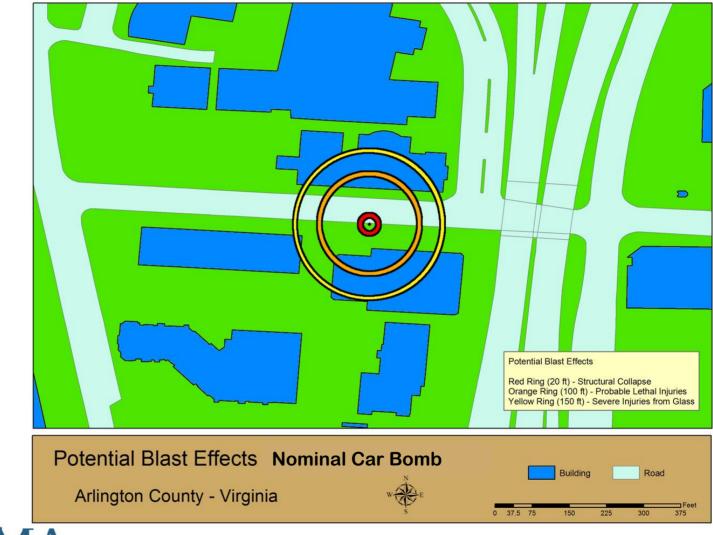
Site HazMat



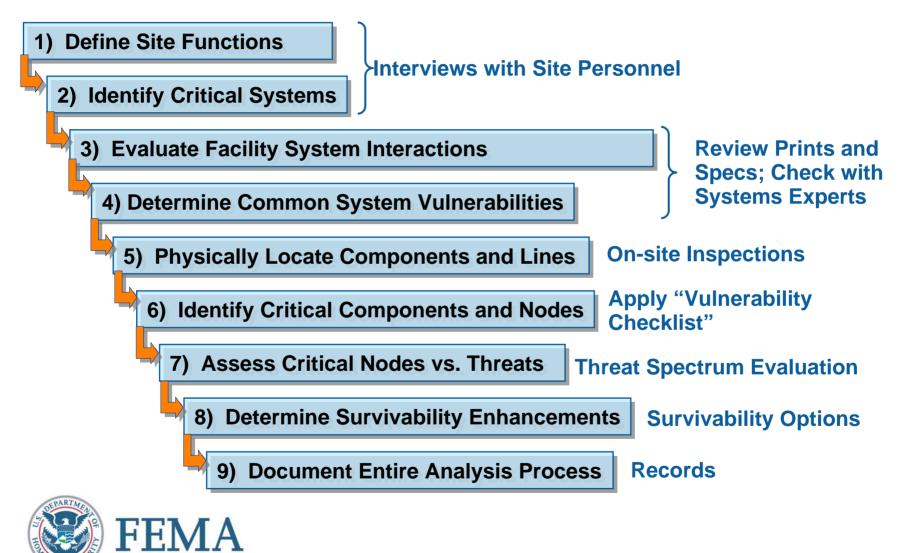
Site Local Transportation Network

Site Principal Buildings by Use

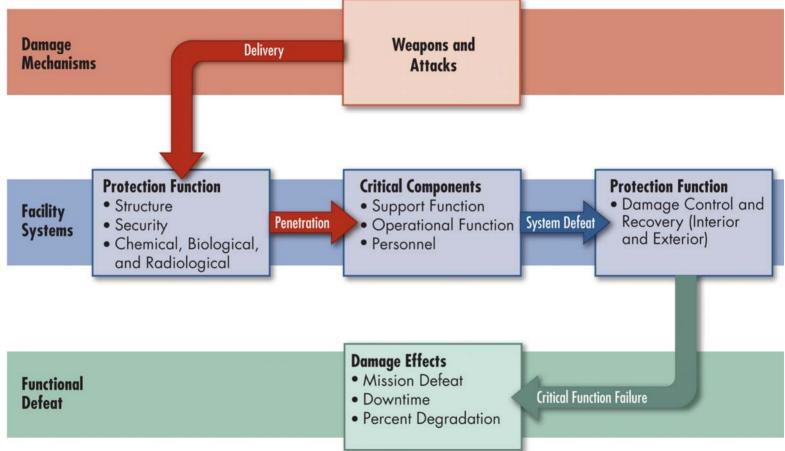
Site Perimeter Imagery



Site Truck Bomb



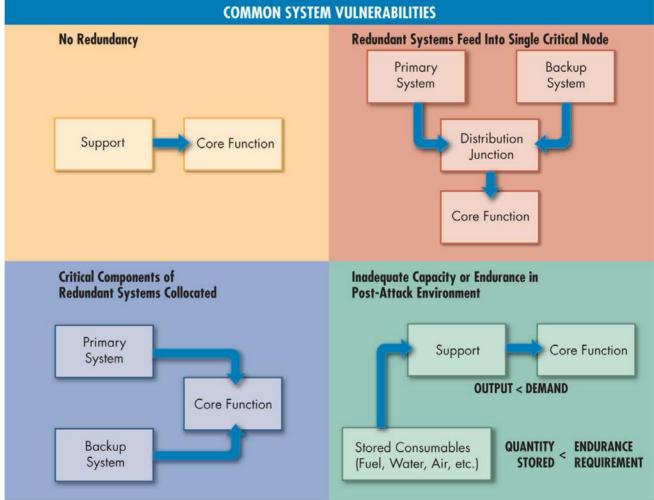
Site Car Bomb



Options to Reduce Vulnerability

Facility System Interactions

FACILITY SYSTEM INTERACTIONS



FEMA


FEMA 426, Figure 1-8: Facility System Interactions, p. 1-23

Single-Point Vulnerabilities

FEMA

FEMA 426, Figure 1-9: Common System Vulnerabilities, p. 1-35

Standard 11	The loading dock and warehouse provide single point of entry to the interior			
Standard 13 and 17	The mailroom is located within the interior and not on exterior wall or separate HVAC system			
Standard 1	The telecom switch and computer data center are adjacent to the warehouse			
Standard 1	The trash dumpster and emergency generator are located adjacent to the loading dock			

FEMA 426, Figure 1-10: Non-Redundant Critical Functions Collocated Near Loading Dock, p. 1-41

Infrastructure SPVs

Drive Through

Electrical Service

Telecom Service

FEMA

Air Intakes

FEMA 426, Figure 1-11: Vulnerability Examples, p. 1-42

Compiles best practices from many sources

Includes questions that determine if critical systems will continue to function during an emergency or threat event

Organized into 13 sections

- Each section should be assigned to a knowledgeable individual
- Results of all sections should be integrated into a master vulnerability assessment
- Compatible with CSI Master Format standard to facilitate cost estimates

Site

Architectural

Structural Systems

Building Envelope

Utility Systems

Mechanical Systems (HVAC and CBR)

Plumbing and Gas Systems **Electrical Systems**

Fire Alarm Systems

Communications and IT Systems

Equipment Operations and Maintenance

Security Systems

Security Master Plan

Vulnerability Question		Guidance	Observations		
6	Mechanical Systems (HVAC and CBR)				
6.1	Where are the air intakes and exhaust louvers for the building? (low, high, or midpoint of the building structure) Are the intakes and exhausts accessible to the public?	Air intakes should be located on the roof or as high as possible. Otherwise secure within CPTED-compliant fencing or enclosure. The fencing or enclosure should have a sloped roof to prevent throwing anything into the enclosure near the intakes. Ref: CDC/NIOSH Pub 2002-139			
6.2	Is roof access limited to authorized personnel by means of locking mechanisms? Is access to mechanical areas similarly controlled?	Roofs are like entrances to the building and are like mechanical rooms when HVAC is installed. Adjacent structures or landscaping should not allow access to the roof. Ref: GSA PBS –P100, CDC/NIOSH Pub 2002-139, and LBNL Pub 51959			

FEMA 426, Adapted from Table 1-22: Building Vulnerability Assessment Checklist, p. 1-46 to 1-92

1.15	Is there minimum setback distance between the building and parked cars?				
4.1	What is the designed or estimated protection level of the exterior walls against the postulated explosive threat?				
4.2	Is the window system design on the exterior façade balanced to mitigate the hazardous effects of flying glazing following an explosive event? (glazing, frames, anchorage to supporting walls, etc.)?				

2.19	Are loading docks and receiving and shipping areas separated in any direction from utility rooms, utility mains, and service entrances, including electrical, telephone/data, fire detection/alarm systems, fire suppression water mains, cooling and heating mains, etc.?
1.16	Does adjacent surface parking on site maintain a minimum stand-off distance? For initial screening consider using 25 meters (82 feet) as a minimum with more distance needed for unreinforced masonry or wooden walls. Reference: GSA PBS-P100

6.1	Where are the air intakes and exhaust louvers for the building? (low, high, or midpoint of the building structure) Are the intakes and exhausts accessible to the public?
1.9	Is there any potential access to the site or building through utility paths or water runoff? (<i>Eliminate potential site access</i> <i>through utility tunnels, corridors, manholes, storm water</i> <i>runoff culverts, etc. Ensure covers to these access points</i> <i>are secured.</i>)
3.1	What type of construction? What type of concrete and reinforcing steel? What type of steel? What type of foundation?

5.19	By what means does the main telephone and data communications interface the site or building?				
5.20	Are there multiple or redundant locations for the telephone and communication service?				
	Does the fire alarm system require communication with external sources?				
5.21	By what method is the alarm signal sent to the responding agency: telephone, radio, etc.?				
	Is there an intermediary alarm monitoring center?				

Vulnerability Rating

	Criteria			
	Very HighOne or more major weaknesses have been identified that make the asset extremely susceptible to an aggressor or hazard. The building lacks redundancies/physical protection and the entire buildin would be only functional again after a very long period of time after the attack.			
Key	High – One or more major weaknesses have been identified that make the asset highly susceptible to an aggressor or hazard. The building has poor redundancies/physical protection and most parts of the building would be only functional again after a long period of time after the attack.	8-9	High	
 Age acc Lev /ph 	Medium High – An important weakness has been identified that makes the asset very susceptible to an aggressor or hazard. The building has inadequate redundancies/physical protection and most critical functions would be only operational again after a long period of time after the attack.	7	Medium High	
Ti				

ements

- er of weaknesses
- ssor potential sibility
- of redundancies cal protection
- frame for building to become operational again

FEMA 452, Table 3-4: Vulnerability Rating, p. 3-16

Vulnerability Rating (continued)

		Criteria			
Medium	dium 5-6 Medium – A weakness has been identified that makes the asset fairly susceptible to an aggressor or hazard. The building has insufficient redundancies/physical protection and most part of the building would be only functional again after a considerable period of time after the attack				
Medium Low	4	Medium Low – A weakness has been identified that makes the asset somewhat susceptible to an aggressor or hazard. The building has incorporated a fair level of redundancies/physical protection and most critical functions would be only operational again after a considerable period of time after the attack.			
Low	2-3	Low — A minor weakness has been identified that slightly increases the susceptibility of the asset to an aggressor or hazard. The building has incorporated a good level of redundancies/physical protection and the building would be operational within a short period of time after an attack.	Key el Numb Aggre acces		
Very Low	1	Very Low — No weaknesses exist. The building has incorporated excellent redundancies/physical protection and the building would be operational immediately after an attack.	/phys Time to bee		

Key elements

- Number of weaknesses
- Aggressor potential accessibility
- Level of redundancies /physical protection
- Time frame for building to become operational again

FEMA 452, Table 3-4: Vulnerability Rating, p. 3-16

Critical Functions

Function	Cyber attack	Armed attack (single gunman)	Vehicle bomb	CBR attack
Administration				
Asset Value	5	5	5	5
Threat Rating	8	4	3	2
Vulnerability Rating	7	7	9	9
Engineering				
Asset Value	8	8	8	8
Threat Rating	8	5	6	2
Vulnerability Rating	2	4	8	9

FEMA 426, Adaptation of Table 1-20: Site Functional Pre-Assessment Screening Matrix, p. 1-38

Critical Infrastructure

Infrastructure	Cyber attack	Armed attack (single gunman)	Vehicle bomb	CBR attack
Site				
Asset Value	4	4	4	4
Threat Rating	4	4	3	2
Vulnerability Rating	1	7	9	9
Structural Systems				
Asset Value	8	8	8	8
Threat Rating	3	4	3	2
Vulnerability Rating	1	1	8	1

FEMA 426, Adaptation of Table 1-21: Site Infrastructure Systems Pre-Assessment Screening Matrix, p. 1-39

Summary

Step-by-Step Analysis Process:

- Expertly performed by experienced personnel
- Determines critical systems
- Identifies vulnerabilities
- Focuses survivability mitigation measures on critical areas
- Essential component of Critical Infrastructure and Critical Function Matrices

Unit IV Case Study Activity

Vulnerability Rating

Background

Vulnerability: any weakness that can be exploited by an aggressor or, in a non-terrorist threat environment, make an asset susceptible to hazard damage

Requirements: Vulnerability Rating Approach

Use rating scale of 1 (very low or no weakness) to

10 (one or major weaknesses)

Answer selected initial Vulnerability Assessment Checklist questions

Refer to Case Study and rate the vulnerability of asset-threat/hazard pairs:

- Critical Functions
- Critical Infrastructure

