First B_s Mixing Results from CDF II

Christoph Paus, MIT

Weak Interactions and Neutrinos 2005 June 6-11, 2005

Outline

Introduction

- + matter/antimatter puzzle and B_s oscillations
- + tests of the Standard Model with *b* hadrons \rightarrow or find new physics with *b* hadron decays

Experimental setup

- + Tevatron accelerator
- + CDF detector

Analysis

- + signal reconstruction
- + calibrations: lifetimes, flavor tagging, B⁰ mixing
- + Δm_s amplitude scan
- Summary and Outlook

Unitarity Triangle - Who Measures What?

Appex $(\bar{\rho}, \bar{\eta})$ Squeezing along side *b*

+ $\sin 2\beta$

+ V_{ub}/V_{cb}

Squeezing along side *c*

+ Δm_d

+ Δm_s

CKM fit result: $\Delta m_s = 17.8 + 6.7 \text{ ps}^{-1}$

Present Experimental Results Summary at 95% CL

 B_s mixing frequency more than 30 times faster than for B^0 \rightarrow experimental challenge

Tevatron Performance: Data Delivered

+ delivered luminosity (2002-2005): 1 fb⁻¹

Plii

+ 350 pb⁻¹ used for analyses shown in following

Bottom/Charm Production in pp

 $\varepsilon_b = 0.002$

+ $\sigma_{data}/\sigma_{theory} = 1.7$

l li i

Run II: $D^+ \rightarrow K\pi\pi$ ($p_T > 6$ GeV, |Y| < 1)

+ single inclusive (D^+): 4.3 ± 0.7 μ b

Run II: $D^0 \rightarrow K\pi$ ($p_T > 6$ GeV, |Y| < 1)

+ single inclusive (D^0): 9.3 ± 1.1 μ b

Difficulties for mixing

- + messy environment (many tracks)
- + boost in longitudinal direction
 - \rightarrow loose opposite side *B* (80%)

+ less flavor tagging info

$$\rightarrow \varepsilon D^2 \approx 1\% vs 30\%$$
 at BaBelle

Run II Upgrades: Hadronic Trigger

B Mixing Phenomenology Neutral *B* mesons: mixtures of two mass eigenstates¹ $|B_H \rangle = \frac{1}{\sqrt{2}}(|B \rangle + |\overline{B} \rangle)$ $|B_L \rangle = \frac{1}{\sqrt{2}}(|B \rangle - |\overline{B} \rangle)$ Heavy and Light states have different mass and width $\Delta m = m_H - m_I (> 0 \text{ by def.})$ $\Delta \Gamma = \Gamma_H - \Gamma_I$ Time evolution with $\Delta \Gamma \neq 0$ $P(t)_{B^0 \to \overline{B^0}} = \frac{1}{2\tau} e^{-t/\tau} (\cosh \frac{\Delta \Gamma t}{2} - \cos \Delta m t) \quad P(t)_{B^0 \to B^0} = \frac{1}{2\tau} e^{-t/\tau} (\cosh \frac{\Delta \Gamma t}{2} + \cos \Delta m t)$ With $\Delta \Gamma = 0$ ($\Delta \Gamma_d / \Gamma_d < 0.01$, $\Delta \Gamma_s / \Gamma_s < 0.20$) $P(t)_{P_0} = \frac{1}{2\tau} e^{-t/\tau} (1 - \cos \Delta m t)$ $P(t)_{B_0} = \frac{1}{2\tau} e^{-t/\tau} (1 + \cos \Delta m t)$

Determine asymmetry

$$A_0(t) = \frac{N(t)_{unmixed} - N(t)_{mixed}}{N(t)_{unmixed} + N(t)_{mixed}} = \cos(\Delta m t)$$

¹Assume no *CP* violation.

B_s Mixing: Experimental Building Blocks

Measure asymmetry in dependence of time

 $A_0^{meas}(t) \equiv \frac{N(t)_{RS} - N(t)_{WS}}{N(t)_{RS} + N(t)_{WS}} = D\cos(\Delta m_s t) \text{ with } D = 2P - 1 = \text{dilution}$ l'Iii

Why is that so difficult?

The larger Δm_S the more crucial $\sigma(ct)$

significance =
$$\sqrt{\frac{S \varepsilon D^2}{2}} \sqrt{\frac{S}{S+B}} \exp(-\frac{(\Delta m_s \sigma_{ct})^2}{2})$$

 $\sigma(ct) = \sqrt{(\sigma_{ct}^0)^2 + (ct \frac{\sigma_p}{p})^2}$

B_s Mixing Analysis - Road Map

Samples

- + confirm SVT based triggers for the samples
- + reconstruct B signals (B^+, B^0, B_s)
- + optimize $S/\sqrt{S+B}$

Lifetimes

IIIii

- + SVT and analysis sculpts proper time distribution
- + develop correction for proper time sculpting
- + fit lifetimes for B^+ , B^0 , B_s

Flavor Taggers

- + calibrate opposite side taggers to parametrize dilution
- + use B^+ , B^0 samples
- + use calibrated tagger dilution in fit for mixing

Amplitude scan for B_s mixing with unbinned likelihood

- + test on B^0 sample
- + proper time resolution per candidate
- + tagging power per candidate

Samples

SVT Based Triggers

Semileptonic: $B_s \rightarrow I^+ D_s^- X$

- + one lepton, one SVT track
- + $p_T' > 4 \text{ GeV}$
- + $p_T^{track} > 2 \text{ GeV}$
- + $p_{T,1} + p_{T,2} > 5.5 \text{ GeV}$
- + $120\mu m < d_0^{track} < 1 mm$

- Hadronic: $B_s \rightarrow D_s^- \pi^-$
 - + two SVT tracks
 - + $p_T > 2 \text{ GeV}$
 - + $p_{T,1} + p_{T,2} > 5.5 \text{ GeV}$
 - + opposite charge
 - + $120\mu m < d_0 < 1mm$
 - + $L_{xy} > 200 \mu m$

Hadronic Decay Signals $D_s^-\pi^+$

Decent samples of fully reconstructed B_s about 900 events

Semileptonic Decay Signals $B \rightarrow I^- D^+ X$

Semileptonic Decay Signals ID_s⁻X

Very decent samples of fully reconstructed B_s about 7800 events (8.7 times hadronic B_s sample) Lifetimes

Classic Lifetime Measurement

Analysis sketch ($B_s \rightarrow J/\psi \phi$)

Ш

- + reconstruct p_T , mass, and $L_{xy} \rightarrow$ calculate proper time $ct = \frac{L_{xy}m}{p_T}$
- + no cuts that bias $ct \rightarrow$ signal probability: $p(t) = Ne^{-t/\tau} \times G(\sigma_{ct})$
- + background from mass sidebands
- + extract $c\tau$ from combined mass and ct fit

Lifetimes in Hadronic Channels

Bias in ct

- + two SVT tracks
- + turnon: $d_0 > 120 \ \mu m$
- + turnoff: $d_0 < 1$ mm and pattern limit
- + selection increases bias

Adjust probability density

- + $p(t) = N(e^{-t/\tau} \times G(\sigma_{ct})) \epsilon(t)$
- + background more complex, still from mass sideband

Do we care for mixing?

- + bias cancels!
- + very small effect on mixing

Hadronic Decays $D\pi$ – Lifetimes

Measure lifetimes of B^+ and $B^0 \rightarrow$ then B_s $c\tau(B^+) = 498 \pm 8(stat) \pm 4(syst) \ \mu m$ $c\tau(B^0) = 453 \pm 7(stat) \pm 4(syst) \ \mu m$ $c\tau(B_s) = 479 \pm 29(stat) \pm 5(syst) \ \mu m$

Hadronic Decay $D_s^-\pi^+$ – Lifetimes

Lifetimes in Semileptonic Channels

Bias in ct (see hadronic)

- + one SVT track
- + turnon: $d_0 > 120 \ \mu m$
- + turnoff: $d_0 < 1$ mm and pattern limit
- + selection increases bias

Corrrect missing momentum

- + from Monte Carlo (K factor)
- + bin in *IDX* mass

Incomplete reconstruction

- + cross talk B^+ , B^0
- + *B* background, $B \rightarrow D_s D$..
- + prompt D background

Lifetimes in Semileptonic Channels - K Factor

Bin fit in *ID* mass: highest mass \rightarrow highest sensitivity

Semileptonic Decay $I^+D_s^-X - Lifetimes$

Measurement not yet complete only statistical uncertainty

- + B^+ , B^0 lifetimes within 20 μ m of world average
- + $c\tau(B_s) = 445 \pm 9.5(stat) \ \mu m$
- + $c\tau(B_s) = 438 \pm 17(tot) \ \mu m$ world average

Proper Time Resolution

Track uncertainties: where do they come from?

- + simply derived from hit resolutions
- hit resolutions are very tricky and need to be measured
 Ch.Paus, Weak Interactions and Neutrinos 2005, 25

Calibration of Proper Time Scale Uncertainty

Create unbiased calibration sample

- + hadronic trigger dominated by prompt D
- + require *D* to trigger and add unbiased track (not triggered)
- + scale factor applied to uncertainty of each event
- + primary vertex position has to be zero \rightarrow extract scale factor
- + long lived background accounted for in fit

l'hir

Flavor Taggers

Tagging B Production Flavor

 $A_0^{meas}(t) \equiv \frac{N(t)_{RS} - N(t)_{WS}}{N(t)_{RS} + N(t)_{WS}} = D\cos(\Delta m_s t) \text{ with } D = 2P - 1 = \text{dilution}$

l'hir

Measuring Δm_d and Tagger Performance

Fitting separately

- + hadronic decays
- + semileptonic decays

Measure

- + Δm_d
- + tagger performance

Sample picture: *ID*⁺*X* SMT

proper time [cm]

Mixing results

- + $\Delta m_d^{had} = 0.503 \pm 0.063 \pm 0.015 \text{ ps}^{-1}$
- + $\Delta m_d^{\text{semi}} = 0.497 \pm 0.028 \pm 0.015 \text{ ps}^{-1}$
- + $\Delta m_d^{\tilde{H}FAG} = 0.502 \pm 0.007 \text{ ps}^{-1}$

Tagger Performance

Measure of tagger performance: εD^2

- + ε if the efficiency
- + *D* is the dilution: D = 2P 1

Tagger Combination

- + taggers are ordered by performance
- + exclusive taging decision, use best available tagger

Corresponding performances

[%]	εD^2 hadronic	εD^2 semileptonic	
Muon	$0.46 \pm 0.11 \pm 0.03$	$0.577 \pm 0.047 \pm 0.034$	
Electron	$0.18 \pm 0.06 \pm 0.02$	$0.293 \pm 0.033 \pm 0.017$	
JQ/Vertex	$0.14 \pm 0.07 \pm 0.01$	$0.263 \pm 0.035 \pm 0.021$	
JQ/Prob.	$0.11 \pm 0.06 \pm 0.01$	$0.150 \pm 0.026 \pm 0.015$	
JQ/High p_T	$0.24 \pm 0.09 \pm 0.01$	$0.157 \pm 0.027 \pm 0.015$	
Total	1.12 ± 0.18	1.429 ± 0.093	

Amplitude Scan

Perform unbinned likelihood fit

- + $p \sim (1 \pm AS_D D_i \cos(\Delta m_s))$
- + scan fixed values of Δm_s
- + record A and $\sigma(A)$

Signal = unit amplitude

- + else A consistent with 0
- + exclude $\Delta m_s @95\% CL$ for (1 – A) > 1.645 $\sigma(A)$

Systematic Uncertainties

+ absolute errors on amplitude are shown

Plit

- + systematic very small compared to statistical uncertainty
- + dominant systematics limited by sample size \rightarrow will improve

lower limit: 7.7 ps⁻¹ at 95% CL

sensitivity: 7.4 ps⁻¹

Hadronic and Combined Result

Comments

- + hadronic sample alone has no sensitive (statistics)
- + but helps semileptonic sample in high Δm_s region
- + sensitivity moves from 7.4 ps⁻¹ to 8.4 ps⁻¹
- + new limit $\Delta m_s < 7.9 \text{ ps}^{-1}$ at 95% confidence level

CDF II and World Combined Average

+ limit stays the same

Phi

+ sensitivity moves from 18.1 ps^{-1} to 18.6 ps^{-1}

Summary

First B_s mixing analysis is completed

- + sensitivity: $\Delta m_s < 8.4 \text{ ps}^{-1}$ at 95% confidence level
- + exclude: $\Delta m_s < 7.9 \text{ ps}^{-1}$ at 95% confidence level
- + used semileptonic and hadronic samples
- + displaced track trigger (SVT) was crucial
- + byproduct: $c\tau(B_s) = 479 \pm 29(stat) \pm 5(syst) \mu m$

Implemented ct bias correction

- + displaced track trigger bias modeled from MonteCarlo
- + very small effect on mixing

Prospects

- + more data
- + statistical power of tagger (same side kaon tagger)
- + proper time resolution: primary vertex per candidate

Backup Slides

The CP Puzzle and the CKM Matrix

Matter/antimatter asymmetry

- + why so much matter?
- + Sakharov says: CP must be violated
- + CKM matrix describes CP violation in SM
- + amount too small to explain matter/antimatter asymmetry
- + good spot for new physics

Sakharov's Conditions (1966)

- + proton must decay
- + universe had a thermal non
 - equilibrium phase
- + CP must be violated

Measure CKM matrix elements

- + unitarity condition $VV^{\dagger} = 1$
- + derive unitarity triangle

In general: weak eigenstates *≠* mass eigenstates

- + mixing between families possible
- + lower quark doublet components absorb difference
- + neutrinos also mix

llii

Ch.Paus, Weak Interactions and Neutrinos 2005, 40

CKM Matrix

General form to describe mixing between quark families:

$$\begin{pmatrix} d' \\ s' \\ b' \end{pmatrix} = V \times \begin{pmatrix} d \\ s \\ b \end{pmatrix} \text{ with } V = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

V is the Cabibbo–Kobayashi–Maskawa matrix Wolfenstein parametrization ($\lambda = 0.224 \pm 0.012$):

$$V = \begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + O(\lambda^4)$$

Least known parameters: ρ and η

Neutral B Meson Mixing

Theory prediction for B^0/B_s^0 mix through box diagram $\Delta m_q = \frac{G_F^2}{6\pi} \eta_B m_{B_q} \hat{B}_{B_q} f_{B_q}^2 m_W^2 S\left(\frac{m_t^2}{m_W^2}\right) |V_{tb}V_{tq}^*|^2$

Lattice QCD calculations:

$$\hat{B}_{B_d} f_{B_d}^2 = (228 \pm 30 \pm 10) \text{ MeV}^2$$

Hadronic uncertainties limit $|V_{td}|$ determination to $\approx 15\%$ In ratio most theory uncertainties cancel

 $\frac{\Delta m_s}{\Delta m_d} = \frac{m_{B_s}}{m_{B_d}} \xi^2 |V_{ts}|^2 / |V_{td}|^2 \quad \text{with} \quad \xi^2 = 1.21 \pm 0.04 \pm 0.05$ Determine $|V_{ts}|^2 / |V_{td}|^2$ to $\approx 5\%$

Tevatron Collider

FERMILAB'S ACCELERATOR CHAIN

Main injector

- + new Tevatron injection stage
- + accelerate and deliver
 higher intensity of protons
- + more efficient \overline{p} transfer
- + \overline{p} recycler (in progress)

Overall improvements:

- + higher collision rate: 396 ns (36×36 bunches) \rightarrow 5-10 higher instantaneous luminosity than Run I
- + higher center-of-mass energy Run I – 1.8 TeV \rightarrow Run II – 1.96 TeV

b Hadron Production in Comparison

Accelerator	CESR,DORIS	LEP,SLC	PEPII,KEKB	Tevatron
Detector	Argus,CLEO	ADLO,SLD	BaBar,Belle	CDF,DØ
$\sigma(b\overline{b})$	~ 1 nb	~ 6 nb	~ 1 nb	~ 50 µb
$\sigma(b\overline{b}):\sigma(had)$	0.26	0.22	0.26	0.001
b hadrons	B^0, B^+	all	B^0, B^+	all
$Boost < \beta \gamma >$	0.06	6	~ 0.5	2-4
Production	B at rest	<i>b</i> b b b b b b b b b b b b b b b b b b	boosted	<i>b</i> b not btb
Pile up	no	no	no	yes
Trigger	inclusive	inclusive	inclusive	selective

Evaluation

- + experimentally LEP/SLC at Z ideal but expensive
- + Babar and Belle produce "cheap", many, but only B^0, B^+
- + Tevatron has largest cross section and produces all *b* hadrons, but high background, $\sigma_{q\overline{q}} \sim 10^3$ larger

In $p\overline{p}$ at Tevatron it's about the trigger

CDF II Detector

Improvements

Statistical power of the sample

- + add same side koan tagger
- + add more B_s decay channels (ex. $B_s \rightarrow D_s^- \pi^+ \pi^+ \pi^-$)
- + gather more data

Improve proper time resolution

- + average primary vertex \rightarrow primary vertex per candidate
- + improve reconstruction of innermost layer (Layer 00)
- + treat large silicon clusters more carefully

For illustration of improvements

- + increase statistical power by factor of 4
- + improve *ct* resolution by 20%

Improvements: Hadronic

Hadronic Analysis CDF II

- + increase statistical power by factor of 4 (new data, taggers)
- + improve *ct* resolution by 20% (primary vertex per candidate) Ch.Paus, Weak Interactions and Neutrinos 2005, 48

Improvements: Semileptonics

Semileptonic Analysis CDF II

+

Plii