

B_s and Λ_b Decays at the Tevatron R.J. Tesarek Fermilab

R.J. Tesarek Fermilab

WIN05 Delphi, Greece

June 6-12 2005

Т

2004 Particle Data Group Summary (B_s)

B_s Summary

- 5 decay modes observed
- 3 Branching fractions
- 18 Upper limits on BR

B_s Physics

- CP violation
- CKM physics
- penguins
- New Physics (beyond Standard Model)

Tevatron produces $\sim 2 B_s/min/\eta/experiment$

BOTTOM, STRANGE MESONS $(B = \pm 1, S = \mp 1)$ $B_{s}^{0} = s\overline{b}, \overline{B}_{s}^{0} = \overline{s}b, \text{ similarly for } B_{s}^{*}$'s


```
I(J^P)=0(0^-)
```

I, J, P need confirmation. Quantum numbers shown are quark-model predictions. Mass $m_{B_{\rm x}^0}=5369.6\pm2.4~{\rm MeV}$

Mean life $\tau = (1.461 \pm 0.057) \times 10^{-12}$ s $c\tau = 438 \ \mu \text{m}$

B⁰_s-B⁰_s mixing parameters

 $\begin{array}{l} \Delta m_{B^0_s} = m_{B^0_{sH}} - m_{B^0_{sL}} > 14.4 \times 10^{12} \ \hbar \ s^{-1}, \ {\rm CL} = 95\% \\ > 94.8 \times 10^{-10} \ {\rm MeV}, \ {\rm CL} = 95\% \\ x_s = \Delta m_{B^0_s} / \Gamma_{B^0_s} > 20.6, \ {\rm CL} = 95\% \\ \chi_s > 0.49833, \ {\rm CL} = 95\% \end{array}$

These branching fractions all scale with B($\overline{b} \rightarrow B_{g}^{0}$), the LEP B_{g}^{0} production fraction. The first four were evaluated using B($\overline{b} \rightarrow B_{g}^{0}$) = (10.7 ± 1.4)% and the rest assume B($\overline{b} \rightarrow B_{g}^{0}$) = 12%.

The branching fraction $\mathsf{B}(B_{9}^{0} \to D_{g}^{-}\ell^{+}\nu_{\ell}$ anything) is not a pure measurement since the measured product branching fraction $\mathsf{B}(\overline{b} \to B_{9}^{0}) \times \mathsf{B}(B_{9}^{0} \to D_{g}^{-}\ell^{+}\nu_{\ell})$ anything) was used to determine $\mathsf{B}(\overline{b} \to B_{9}^{0})$, as described in the note on "Production and Decay of *b*-Flavord Hadrons." For inclusive branching fractions, e.g., $B \to D^{\pm}$ anything, the values usually are multiplicities, not branching fractions. They can be greater than one.

B ⁰ _s DECAY MODES		Fraction (Γ_i/Γ)	Confider	nce level	p (MeV/c)
D_{c}^{-} anything		(94 ± 30) %		-
$D_{\ell}^{-} \ell^{+} \nu_{\ell}$ anything	[kkk] (7.9 ± 2.4) %		-
$D_{s}^{-}\pi^{+}$		< 13	%		2322
$D_{s}^{(*)+} D_{s}^{(*)-}$		(23 +21) %		-
$J/\psi(1S)\phi$		(9.3 ± 3.3	$) \times 10^{-4}$		1590
$J/\psi(1S)\pi^{0}$		< 1.2	× 10 ⁻³	90%	1788
$J/\psi(1S)\eta$		< 3.8	$\times 10^{-3}$	90%	1735
$\psi(2S)\phi$		seen			1123
$\pi^{+}\pi^{-}$		< 1.7	$\times 10^{-4}$	90%	2681
$\pi^{0}\pi^{0}$		< 2.1	$\times 10^{-4}$	90%	2681
$\eta \pi^0$		< 1.0	$\times 10^{-3}$	90%	2655
ηη		< 1.5	$\times 10^{-3}$	90%	2628
$\rho^0 \rho^0$		< 3.20	$\times 10^{-4}$	90%	2570
$\phi \rho^0$		< 6.17	$\times 10^{-4}$	90%	2528
$\phi \phi$		< 1.183	$\times 10^{-3}$	90%	2484
$\pi^{+}K^{-}$		< 2.1	$\times 10^{-4}$	90%	2660
K ⁺ K ⁻		< 5.9	$\times 10^{-5}$	90%	2639
$\overline{K}^{*}(892)^{0}\rho^{0}$		< 7.67	$\times 10^{-4}$	90%	2551
K*(892) ⁰ K*(892) ⁰		< 1.681	$\times 10^{-3}$	90%	2532
φK*(892) ⁰		< 1.013	$\times 10^{-3}$	90%	2508
pp		< 5.9	$\times 10^{-5}$	90%	2516
		< 1.48	$\times 10^{-4}$	90%	2685
$\phi \gamma$		< 1.2	$\times 10^{-4}$	90%	2588
Lepton	Family n	umber (<i>LF</i>) violati	ng modes o	 r	
$\Delta B =$	= 1 weak	neutral current (B	1) modes		
$\mu^{+}\mu^{-}$	B1	< 2.0	$\times 10^{-6}$	90%	2683
e+ e-	B1	< 5.4	$\times 10^{-5}$	90%	2685
$e^{\pm} \mu^{\mp}$	LF	[gg] < 6.1	$\times 10^{-6}$	90%	2684
$\phi(1020)\mu^{+}\mu^{-}$	B1	< 4.7	$\times 10^{-5}$	90%	2584
$\phi \nu \overline{\nu}$	B1	< 5.4	$\times 10^{-3}$	90%	2588

R.J. Tesarek Fermilab

WIN05 Delphi, Greece

June 6-12 2005

2004 Particle Data Group Summary (Λ_b)

Λ_b Summary

- 4 decay modes seen
- 2 Branching Fractions
- 3 Upper limits on BR

Λ_{b} Physics

- Test HQET/SCET
- CKM physics
- CP violation
- Form Factors

Tevatron produces $\sim 2 \Lambda_{b}/min/\eta/experiment$

R.J. Tesarek Fermilab

BOTTOM BARYONS

$$(B = -1)$$

$$\Lambda_b^0 = u \, d \, b, \, \Xi_b^0 = u \, s \, b, \, \Xi_b^- = d \, s \, b$$

$$I(J^P) = 0(\frac{1}{2}^+)$$

$$I(J^P) \text{ pot yet measured: } 0(\frac{1}{2}^+) \text{ is the quark model prediction}$$

J') not yet measured; $0(\frac{1}{2}^{-1})$ is the quark model predict Mass $m = 5624 \pm 9$ MeV (S = 1.8) Mean life $\tau = (1.229 \pm 0.080) \times 10^{-12}$ s $c\tau = 368 \ \mu$ m

These branching fractions are actually an average over weakly decaying b-baryons weighted by their production rates in Z decay (or high-energy $p\overline{p}$), branching ratios, and detection efficiencies. They scale with the LEP b-baryon production fraction B(b \rightarrow b-baryon) and are evaluated for our value B(b \rightarrow b-baryon) = (9.9 \pm 1.7)%.

The branching fractions B(b-baryon $\rightarrow \Lambda \ell^- \overline{\nu}_\ell$ anything) and B($\Lambda_b^0 \rightarrow$

 $A_c^+\ell^-\,\overline{\nu}_\ell$ anything) are not pure measurements because the underlying measured products of these with B($b\to b\text{-baryon}$) were used to determine B($b\to b\text{-baryon}$), as described in the note "Production and Decay of b-Flavored Hadrons."

For inclusive branching fractions, e.g., $B\to D^\pm$ anything, the values usually are multiplicities, not branching fractions. They can be greater than one.

Fraction (Γ _i	/Γ)	Confidence level	р (MeV/c)
$(4.7\pm2.8) imes10^{-4}$			
seen			2345
seen			2156
[t] (9.2±2.1)) %		-
< 5.0	$\times 10^{-5}$	5 90%	2732
< 5.0	$\times 10^{-5}$	5 90%	2711
< 1.3	$\times 10^{-3}$	3 90%	2701
	Fraction (Γ_i (4.7±2.8 seen seen [t] (9.2±2.1 < 5.0 < 5.0 < 1.3	Fraction (Γ_i/Γ) $(4.7\pm2.8) \times 10^{-4}$ seen $[t] (9.2\pm2.1) \%$ $< 5.0 \times 10^{-4}$ $< 5.0 \times 10^{-4}$ $< 1.3 \times 10^{-5}$	$\begin{tabular}{ c c c c c } \hline Fraction (\Gamma_i/\Gamma) & Confidence level \\ \hline (4.7\pm2.8)\times10^{-4} \\ & seen \\ & seen \\ \hline [t] & (9.2\pm2.1)\% \\ & <5.0 & \times10^{-5} & 90\% \\ & <5.0 & \times10^{-5} & 90\% \\ & <1.3 & \times10^{-3} & 90\% \\ \hline \end{tabular}$

CDF Experiment

Detector

- Tracking/muon $|\eta| < 1$
- Silicon $|\eta| < 2$
- I.4 T magnetic field
- Particle ID (TOF, dE/dx)

Trigger

- Tracks
- Leptons
- **Displaced vertices**
- Impact parameter

R.J. Tesarek *Fermilab*

D0 Experiment

B_s Decays

R.J. Tesarek Fermilab

WIN05 Delphi, Greece

June 6-12 2005

Rare B_s Decays

- $B_s \rightarrow \phi \mu \mu$
- $B_s \rightarrow \phi \phi$ (+strong penguin)
- $B_s \rightarrow \psi(2s)\phi$

Similar physics as $B^0 \rightarrow X_s \gamma$, (Martin Gorbahn's talk) Observation at Tevatron in reach

$B_s \rightarrow \mu\mu$:

Standard Model Prediction small $\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = (3.5 \pm 0.9) \times 10^{-5}$

Buchalla, Buras; Misiak, Urban

Observation at Tevatron implies new physics

WIN05 Delphi, Greece

-9

 B_s →φφ, ψ(2S)φ

Both modes normalized using Bs $\rightarrow J/\psi\phi$

R.J. Tesarek Fermilab

Rare Decays: $B_s \rightarrow \mu^+ \mu^-$

Cut based analysis

o Transverse decay length (Lxy) o Isolation $\Delta r = (\Delta P_T^2 + \Delta \eta^2)^{1/2}$

o Vertex pointing(transverse plane)

R.J. Tesarek Fermilab

Rare Decays: $Bs \rightarrow \mu\mu$

Use discriminating variables to form liklihood. M^{cMU-CMU} / GeV/c² transverse decay length 5.8- **Isolation** 5.6 pointing 5.4 1/N dN/dLikelihood **CDF** Preliminary 0.5- $B_{s(d)} \!\!\! \rightarrow \!\!\!\! \mu^{+} \!\!\! \mu^{-}$ 5.2 364 pb⁻¹ 0.4 Signal 5 (Pythia MC) 0.3-4.8-Background 0.2 0.85 0.8 (data sidebands) 0.1

Likelihood

likelihood

$$\mathcal{B}(B^0 \to \mu^+ \mu^-) < 4.9 \times 10^{-8} (95\% \text{ CL})$$

 $\mathcal{B}(B^0_* \to \mu^+ \mu^-) < 2.0 \times 10^{-7} (95\% \text{ CL})$

0.9

R.J. Tesarek Fermilab

0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9

0+0 0

WIN05 Delphi, Greece

0.95

CDF Preliminary

364_pb⁻

B

Rare Decays: $B_s \rightarrow \mu^+ \mu^-$

mSUGRA Dedes, Dreiner, Nierste, PRL (2001) 251804

solid red: excluded by theory or previous experiments.

Dashed red line: light higgs mass (m_h)

Dashed green line: SUSY δa_{μ} (10⁻¹⁰ units)

Black Line: $BR(B_s \rightarrow \mu \mu)$

 $\tan\beta=50$, A₀=0, $\mu>0$, m_t=175 GeV 2000 10^{-9} 7 10-9 1500 1000 15 500 **CDF/D0 Exlucsion** (95%CL) 0 250500 7501000 1250 15000 $M_{1/2}$ [GeV]

R.J. Tesarek Fermilab

WIN05 Delphi, Greece

M₀ [GeV

R.J. Tesarek Fermilab

1st Evidence: $B_s \rightarrow D_{s1}^* \mu \nu X$

R.J. Tesarek Fermilab

Λ_{b} Decays

R.J. Tesarek Fermilab

WIN05 Delphi, Greece

June 6-12 2005

Goal: Exclusive semileptonic decays!

- Can it be done in a hadron collider environment?
- Test HQET
- prelude to other measurements

 $|d_0|(\mu) > 120 \mu m$

1st Observation: $\Lambda_b^0 \rightarrow \Lambda_c^{*+} \mu^- \nu$, $\Sigma_c \pi \mu$

Exclusive semileptonic BR

Subtract backgrounds to get exclusive ratio of BR

R.J. Tesarek Fermilab

Ratio of Branching Fractions: HQET Test

Experimental Uncertainties:

$\Lambda_b \rightarrow hh (pK^-, p\pi^-)$

R.J. Tesarek *Fermilab*

1st Observation: $\Lambda_b \rightarrow \Lambda_c^+ \pi^+ \pi^- \pi^-$

- Expect rich resonance structure $(\Lambda_c^*, \Sigma_c^{++, +, 0})$
- Study charm baryons

R.J. Tesarek Fermilab

Summary

B_s Decays:

- Observation and BR for 3 decays $\phi\phi$, $\Psi(2S)\phi$, $D_s\pi$
- Limits on SUSY mSUGRA ($B_s \rightarrow \mu \mu$)
- Observation of new semileptonic decay ($B_s \rightarrow D_{s1} \mu v X$)

Λ_{b} Decays:

- Observation of 5 new decay modes $\Lambda_c^*(2593)\mu\nu, \Lambda_c^*(2625)\mu\nu, \Sigma_c^{++}\mu\nu, \Sigma_c^{-0}\mu\nu, \Lambda_c^{-3\pi}$
- Exclusive semileptonic BR
- Upper limit for BR rare decay ($\Lambda_b \rightarrow hh$)

Just the beginning...

R.J. Tesarek Fermilab

Backup Slides

R.J. Tesarek Fermilab

WIN05 Delphi, Greece

June 6-12 2005

B_s → $\psi(2S) \phi$

R.J. Tesarek Fermilab

 $B^0 \rightarrow D^{(*)} \mu \nu$

B^0,Λ_b backgrounds

 B^{0},Λ_{h} backgrounds

R.J. Tesarek Fermilab