New Lifetime & Mixing Results from CDF

Mark Neubauer

University of California, San Diego

for the CDF Collaboration

Topics:

- Lifetimes of *b*-Flavored Hadrons
 - $\rightarrow \Lambda_{b}$ lifetime in fully-reconstructed decay
 - → B_c, B_s lifetimes
- B_s Mixing

Main focus of this talk

Mark Neubauer

Heavy Flavor Physics at CDF

Tevatron competitive in B physics:

- b production O(1000) x B factories (unfortunately background from other QCD processes O(1000) x signal → triggering crucial!)
- Produce not only B⁰/B⁺, but all b-species (B⁰, B⁺, B_s, B_c, B^{**}, Λ_b, Ξ_b)

Rich program in heavy flavor:

- B, D, and Quarkonium production
- Mixing
- CP violation
- Rare decays
- Spectroscopy
- *b-Hadron* Lifetimes

The CDFII Detector

Mark Neubauer

CDF II Detector

FNAL W&C Seminar / November 11, 2005

Why Study *b*-Hadron Lifetimes?

Critical testbed for theoretical framework used in predictions of heavy quark quantities:

- not only interesting in themselves, but needed to extract weak interaction quantities from observables
- *b*-hadron lifetime ratios can be accurately predicted $(\sim 5\% \text{ or better})$

At Tevatron/CDF:

- Important experimental reference Overlap with B factories → aid in study of potential detector/trigger/analysis biases
- Measure lifetime of species not produced at B factories
- Experimental techniques used in lifetime measurements are critical for the pursuit of Bs mixing!

Mark Neubauer

Lifetimes of *b*-Flavored Hadrons

All b-flavored hadrons have same lifetime via weak transition

 $b \rightarrow Wq$ (q = c, u) if other quarks considered mere spectators

In reality, lifetime differences arise from non-trivial spectator quark effects:

Магк меирацег

Heavy Quark Expansion

Express decay width (Г) as operator product expansion (OPE) in 1/m $_{_{\rm b}}$ and $\alpha_{_{\rm s}}$

$$\Gamma(H_b) = \frac{G_F^2 |V_{cb}|^2 m_b^5}{192\pi^3} \left[c^{(3)} \frac{\langle \bar{b}b \rangle_{H_b}}{2M_{H_b}} + c^{(5)} \frac{g_s}{m_b^2} \frac{\langle \bar{b}\sigma_{\mu\nu}G^{\mu\nu}b \rangle_{H_b}}{2M_{H_b}} + \frac{96\pi^2}{m_b^3} \sum_k c_k^{(6)} \frac{\langle O_k^{(6)} \rangle_{H_b}}{2M_{H_b}} \right] + O(1/m_b^4)$$

Λ_b Lifetime - Current Status

Exp	Method	Data set	$\tau(\Lambda_{\rm b})$ (ps)	precision
OPAL	$\Lambda_c^+ l, \Lambda l^+ l^-$	'90 - '95	$1.29^{+0.24}_{+0.22} \pm 0.06$	18%
DELPHI	$\Lambda_c^+ 1$	'91 - '94	$1.11_{\rm +0.18}^{\rm +0.19}\pm0.05$	17%
ALEPH	$\Lambda_c^+ 1$	'91 - '95	$1.18^{+0.13}_{+0.12} \pm 0.03$	11%
ALEPH	$\Lambda l^+ l^-$	'91 - '95	$1.30_{+0.21}^{+0.26} \pm 0.04$	18%
CDF	$\Lambda_c^+ 1$	'91 - '95	$1.32 \pm 0.15 \pm 0.06$	12%
CDF	J/ψ Λ	'02 - '03	$1.25 \pm 0.26 \pm 0.10$	28%
D0	J/ψ Λ	'02 - '04	$1.29^{+0.24}_{+0.18} \pm 0.06$	18%
AVG			$\boldsymbol{1.232 \pm 0.072}$	6%

Tarantino, et al. hep-ph/0203089

Early theory predictions for $\tau (\Lambda_b)/\tau (B^0) \sim 2\sigma$ high Current NLO QCD calculation gives $\tau(\Lambda_b) / \tau(B^0) = 0.86 \pm 0.05$ consistent at 0.8 σ -level w/ HFAG 2005 world avg $\tau(\Lambda_b) / \tau(B^0) = 0.803 \pm 0.047$

Mark Neubauer

Λ_b Lifetime: Analysis Strategy

• Measure $\tau(\Lambda_{b})$ in fully-reconstructed decay mode $\Lambda_{b} \rightarrow J/\psi \Lambda^{0}$

Pros:

semi-leptonics

relative to

- Mass peak to distinguish signal & bkg
- Event-by-event measure of βγ (boost) (Do not rely on MC to account for unobserved v as in semi-leptonics)
 Con:
 - Smaller signal \rightarrow larger statistical error
- Use $\tau(B^0)$ measurement in $B^0 \rightarrow J/\psi K_s$ as reference mode
- \rightarrow similar decay (J/ ψ + V⁰)
- \rightarrow larger sample (~10× $\Lambda_{\rm b}$) for systematic studies
- Check lifetime in full-reconstructed $B_{u,d} \rightarrow (J/\psi, \psi') + X$ decay modes
- \rightarrow validate lifetime analysis using J/ $\!\psi$ vertex only for all decay modes

b-Hadron Lifetimes We Measure

B⁰ → J/ψ K_s, with J/ψ → μμ, K_s → ππ B⁰ → ψ(2S) K_s, with ψ(2S) → μμ, K_s → ππ B⁰ → ψ(2S) K_s, with ψ(2S) → J/ψππ, J/ψ → μμ, K_s → ππ

 $B^0 \rightarrow J/\psi K^{*0}$, with $J/\psi \rightarrow \mu\mu$, $K^{*0} \rightarrow K\pi$ $B^0 \rightarrow \psi(2S) K^{*0}$, with $\psi(2S) \rightarrow \mu\mu$, $K^{*0} \rightarrow K\pi$ $B^0 \rightarrow \psi(2S) K^{*0}$, with $\psi(2S) \rightarrow J/\psi\pi\pi$, $K^{*0} \rightarrow K\pi$

 $\begin{array}{ll} B^{\scriptscriptstyle +} \to J/\psi \; K^{\scriptscriptstyle +}, & \mbox{with } J/\psi \to \mu\mu \\ B^{\scriptscriptstyle +} \to \psi(2S) \; K^{\scriptscriptstyle +}, & \mbox{with } \psi(2S) \to \mu\mu \\ B^{\scriptscriptstyle +} \to \psi(2S) \; K^{\scriptscriptstyle +}, & \mbox{with } \psi(2S) \to J/\psi\pi\pi, J/\psi \to \mu\mu \\ B^{\scriptscriptstyle +} \to J/\psi \; K^{\ast_+}, & \mbox{with } J/\psi \to \mu\mu, \; K^{\ast_+} \to K_{_S}\pi \end{array}$

 $\Lambda_b \to J/\psi \Lambda^0, \quad \text{ with } J/\psi \to \mu\mu, \Lambda^0 \to p\pi$ Our primary goal

Mark Neubauer

Statistical errors only (for cross- $\sqrt{}$)

Full systematics

Full systematics

Selection: J/ ψ and ψ (2S)

Di-muon Trigger:

Level 1: 2 opp-Q tracks, p_T > 1.5 GeV/c, track-stub match Level 2: Auto Level 3: Full tracking, m(μμ), track-stub match

Muons:

- good track-stub match $J/\psi \rightarrow \mu\mu$:
- \geq 3 r- ϕ Si hits (SVX + ISL) 3.014 < M_{uu} < 3.174 GeV

Vertex quality:

• $Prob(\chi^2) > 0.1\%$

Invariant Mass:

 $\psi(2S) \rightarrow \mu\mu:$ $3.643 < M_{\mu\mu} < 3.723 \text{ GeV}$ $\psi(2S) \rightarrow J/\psi \pi^+ \pi^-:$ $3.676 < M_{\mu\mu\pi\pi} < 3.696 \text{ GeV}$

Dataset: ~370 pb⁻¹ of integrated luminosity

FNAL W&C Seminar / November 11, 2005

Selection: K_s and Λ^0

Track quality:

- \geq 2 COT axial SL with \geq 5 hits
- \geq 2 COT stereo SL with \geq 5 hits

Vertex quality:

• $Prob(\chi^2) > 0.1\%$

Decay length:

• $L_{xy} > 0.1 \text{ cm}$

Invariant Mass:

•
$$K_{s} \rightarrow \pi \pi$$
: 0.472 < $M_{\pi\pi}$ < 0.523 GeV
• $\Lambda^{0} \rightarrow p\pi$: 1.107 < $M_{\pi p}$ < 1.125 GeV

Veto on Swap Mass:

$$\begin{array}{l} \bullet \ {\rm K}_{_{\rm S}} \to \pi \pi {\rm :} \ 1.109 < {\rm M}_{_{\pi \pi \to p}} < 1.124 \ {\rm GeV} \\ \bullet \ {\rm \Lambda}^0 \to p \pi {\rm :} \ 0.482 < {\rm M}_{_{\pi p \to \pi}} < 0.511 \ {\rm GeV} \end{array}$$

FNAL W&C Seminar / November 11, 2005

Selection: *b*-Hadrons

Only present here the $B^0 \rightarrow J/\psi K_s$ and $\Lambda_b \rightarrow J/\psi \Lambda^0$ selection

 \rightarrow Selection/optimization similar for other B modes

Vertex Fit with kinematic constraints:

- J/ψ mass constrained to PDG 2004 value
- V^0 momentum constrained to point back to J/ψ decay vertex in 3D

Optimize these additional cuts:

- $V^0 L_{xy}$ significance $(L_{xy}/\sigma(L_{xy}))$
- V⁰ mass window
- $V^0 p_t$
- $B^0/\Lambda_b p_t$
- $B^0/\Lambda_b \operatorname{Prob}(\chi^2)$

FNAL W&C Seminar / November 11, 2005

S²/(S+B) Optimization

- Single-b Monte Carlo for signal
- "Far" sidebands in data for background

 $\begin{array}{l} \Lambda^0 \ L_{_{xy}} \ significance > 4.0 \\ \Lambda^0 \ mass \ window: \pm 9 \ MeV \\ \Lambda^0 \ p_t > 2.6 \ GeV \\ \Lambda_b \ p_t > 4.0 \ GeV \\ \Lambda_b \ Prob(\chi^2) > 10^{-4} \end{array}$

$$\begin{split} &K_{s} \ L_{xy} \ significance > 6.0 \\ &K_{s} \ mass \ window: \pm 25 \ MeV \\ &K_{s} \ p_{t} > 1.5 \ GeV \\ &B^{0} \ p_{t} > 4.0 \ GeV \\ &B^{0} \ Prob(\chi^{2}) > 10^{-4} \end{split}$$

FNAL W&C Seminar / November 11, 2005

K_s and Λ⁰ after *b*-Hadron Selection

• Veto Λ^0 in K_s and K_s in Λ^0 using $p \leftrightarrow \pi$ swapped-mass hypothesis to suppress V^0 cross-contamination

• Very clean \rightarrow Majority of background comes from combinations of real J/ψ and real K_s , Λ^0

FNAL W&C Seminar / November 11, 2005

b-Hadron Yields: B⁰ and Λ

FNAL W&C Seminar / November 11, 2005

b-Hadron Yields: Other B⁰ Modes

FNAL W&C Seminar / November 11, 2005

b-Hadron Yields: Other B⁺ Modes

FNAL W&C Seminar / November 11, 2005

Determining the Lifetime

Mark Neubauer

Fit Model: Overview

Overall probability density function (PDF) is a normalized sum of signal and background contributions:

$$P(\lambda_i, \sigma_i^{\lambda}, m_i, \sigma_i^m \mid \vec{\xi}) = (1 - f_b) P_{sig} + f_b P_{bkg}$$

where:

$$P_{sig}, P_{bkg} \text{ are products of PDL, PDLerror, and mass PDFs:}$$

$$P_{sig,bkg} = P_{sig,bkg}^{\lambda}(\lambda_i | \sigma_i^{\lambda}, \vec{\alpha}) P_{sig,bkg}^{\sigma^{\lambda}}(\sigma_i^{\lambda} | \vec{\beta}) P_{sig,bkg}^{m}(m_i | \sigma_i^{m}, \vec{\gamma})$$
Unbinned maximum likelihood fit to extract $\vec{\xi} = [\vec{\alpha}, \vec{\beta}, \vec{\gamma}, \vec{\delta}]$
 $(\vec{\xi} \text{ contains 18 parameters, including signal } c\tau)$

FNAL W&C Seminar / November 11, 2005

Fit Model: Signal PDL

Signal PDL modeled as an exponential decay convoluted with a Gaussian resolution function :

$$P_{sig}^{\lambda}(\lambda_{i},\sigma_{i}^{\lambda}|\vec{\alpha}_{sig}) = E(\lambda_{i}|c\tau) * G(\lambda_{i},\sigma_{i}^{\lambda}|s)$$

where:

 τ = signal lifetime (the goal)

s = overall scale factor on PDL errors

$$E(\lambda_{i}|c\tau) = \begin{vmatrix} \frac{1}{c\tau} e^{-\lambda_{i}/c\tau}, c\tau \ge 0\\ 0, c\tau < 0 \end{vmatrix} \quad G(\lambda_{i}, \sigma_{i}^{\lambda}|s) = \frac{1}{\sqrt{2\pi}s\sigma_{i}^{\lambda}} e^{\frac{-\lambda_{i}^{2}}{2(s\sigma_{i}^{\lambda})^{2}}}$$

Analytic expression after convolution:

$$P_{sig}^{\lambda}(\lambda_{i},\sigma_{i}^{\lambda}|c\tau,s) = \frac{1}{2c\tau} e^{\frac{(s\sigma_{i}^{\lambda})^{2}}{2(c\tau)^{2}} - \frac{\lambda_{i}}{c\tau}} Erfc \left| \frac{s\sigma_{i}^{\lambda}}{\sqrt{2}c\tau} - \frac{\lambda_{i}}{\sqrt{2}s\sigma_{i}^{\lambda}} \right|$$

FNAL W&C Seminar / November 11, 2005

Fit Model: Background PDL

Background PDL modeled as sum of four components:

- $\circ\,$ zero lifetime background
- negative exponential
- 2 positive exponentials
- (prompt J/ ψ , determines resolution function) (non-Gaussian tails on resolution function) (b \rightarrow J/ ψ X long-lived backgrounds)

all convoluted with a Gaussian resolution function

$$\mathbf{P}_{bkg}^{\lambda}(\lambda_{i}|\sigma_{i}^{\lambda},\mathbf{s},\mathbf{f}_{-},\lambda_{-},\mathbf{f}_{+},\lambda_{+},\mathbf{f}_{++},\lambda_{++}) = (1-\mathbf{f}_{-}-\mathbf{f}_{+}-\mathbf{f}_{++})\frac{1}{\sqrt{2\pi}s\sigma_{i}^{\lambda}}\mathbf{e}^{\frac{-\lambda_{i}^{2}}{2(s\sigma_{i}^{\lambda})^{2}}} + \begin{pmatrix} \frac{\mathbf{f}_{+}}{\lambda_{+}}\mathbf{e}^{\frac{-\lambda_{i}}{\lambda_{+}}} + \frac{\mathbf{f}_{+}}{\lambda_{++}}\mathbf{e}^{\frac{-\lambda_{i}}{\lambda_{++}}}, \lambda_{i} \ge \mathbf{0} \\ \frac{\mathbf{f}_{-}}{\lambda_{-}}\mathbf{e}^{\frac{\lambda_{i}}{\lambda_{-}}}, \lambda_{i} < \mathbf{0} \end{pmatrix} \ast \mathbf{G}(\lambda_{i},\sigma_{i}^{\lambda}|s)$$

where:

- f_{-} = fraction of negative exponential
- λ_{-} = decay constant for negative exponential
- $f_{+(++)}$ = fraction of $1^{st}(2^{nd})$ positive exponential
- $\lambda_{+(++)}$ = decay constant of 1st(2nd) positive exponential

Mark Neubauer

Fit Model: PDL Error

Gaussian convoluted with exponential for signal, background PDL error:

$$\mathbf{P}^{\sigma^{\lambda}}(\sigma_{i}^{\lambda}|\lambda_{p},\sigma_{p},\mu_{p}) = \frac{1}{2\lambda_{p}} e^{\frac{\sigma_{p}^{2}}{2\lambda_{p}^{2}} - \frac{\sigma_{i}^{\lambda} - \mu_{p}}{\lambda_{p}}} \operatorname{Erfc}\left|\frac{\sigma_{p}}{\sqrt{2}\lambda_{p}} - \frac{\sigma_{i}^{\lambda} - \mu_{p}}{\sqrt{2}\sigma_{p}}\right|$$

Reasonable (empirical!) model of observed PDL error distributions:

FNAL W&C Seminar / November 11, 2005

Fit Model: Mass

Signal mass is modeled as a single Gaussian with mean M and width $s_{\rm M}\sigma_{\rm i}^{\rm m}$:

$$P_{sig}^{m}(m_{i} | \sigma_{i}^{m}, M, s_{M}) = \frac{1}{\sqrt{2\pi} s_{M} \sigma_{M}} e^{\frac{-(m_{i} - M)^{2}}{2(s_{M} \sigma_{i}^{m})^{2}}}$$

where:

M = mass $s_M = scale factor on mass errors$

Linear mass shape used as background mass model (single parameter, C_0 , after normalization over mass window $(M_{\rm low},M_{\rm high})$):

$$P_{bkg}^{m}(m_{i}|C_{0}) = \left(\frac{2}{M_{high}^{2} - M_{low}^{2}} - \frac{2C_{0}}{M_{high} + M_{low}}\right)m_{i} + C_{0}$$

Mark Neubauer

Validation: Toy Monte Carlo

FNAL W&C Seminar / November 11, 2005

Validation: Realistic MC

FNAL W&C Seminar / November 11, 2005

Fit Results: $B^0 \rightarrow J/\psi K_s$

FNAL w&C Seminar / November 11, 2005

b-Hadron Lifetime Summary

FNAL W&C Seminar / November 11, 2005

Lifetime Cross-Checks

Look for unexpected $c\tau$ dependence:

Run range, B⁰ vertex prob(χ^2), B⁰ p_T, B⁰ \eta, B⁰ ϕ_0 , B⁰ z-position, K_s p_T, track occupancy, K_s L_{xy} and L_{xy} / σ_{Lxy} from J/ ψ vertex, K_s and J/ ψ r- ϕ silicon hits, fit range, ...

- \rightarrow No statistically-significant dependence found
- Variations on analysis procedure:
 - COT-only tracking for K_s

 \rightarrow important check for possible bias from V^0 Si hits

• *b*-hadron kinematic fit constraints

 \rightarrow (2-D/3-D pointing constraint, V⁰ mass constraint)

• PDL calculation

Mark Neubauer

- \rightarrow candidate mass for boost, $B^{\scriptscriptstyle 0}$ vertex for decay vtx
- \rightarrow Variation results consistent with baseline analysis

FNAL W&C Seminar / November 11, 2005

Systematic Uncertainties

Fitter bias:	Source	$c\tau(B^0)(\mu m)$
• toyMC studies	Fitter Bias	0.2
• Variations in choice of	Fit Model:	
resolution function, signal	PDL Resolution	3.0
& background models	Mass Signal	1.8
 probe mass/PDL correlation 	Mass Background	0.1
PV determination:	PDL Background	0.6
 different beamline-z choice 	Mass-dependent PDL Background	0.9
Alignment:	PDL Error Modeling	0.1
• SVX internal,	Mass Error Modeling	0.4
• SVX-COT global (translation, rotation)	Primary Vertex Determination	0.2
V^0 Pointing.	Alignment	3.0
• PDL-dependent bias from	V ⁰ Pointing	1.0
V^0 to J/ ψ pointing constraint	TOTAL	4.9

FNAL W&C Seminar / November 11, 2005

 $c\tau(\Lambda_b)$ (μ m)

0.5

1.5

1.3

0.5

3.7

0.9

0.1

3.0

0.3

3.8

1.0

6.6

Λ_b Lifetime: Summary

We measure in decay mode $\Lambda_{\rm b} \rightarrow J/\psi \Lambda^0$:

 τ ($\Lambda_{\rm b}$) = 1.45 ± 0.13 (stat.) ± 0.02 (syst.) ps

We measure in our control decay mode $B^0 \rightarrow J/\psi K_s$: τ (B^0) = 1.503 $^{+0.050}_{-0.048}$ (stat.) ± 0.016 (syst.) ps consistent w/ PDG 2004 value of 1.536 ± 0.014 ps

Using our $\tau(\Lambda_{\rm b})$ measurement and PDG 2004 $\tau(B^0)$:

 $\tau (\Lambda_{\rm b})/\tau (B^0) = 0.944 \pm 0.086 \text{ (stat.+syst.)}$

This is consistent w/ world average @ 1.4σ level and current NLO HQE calculations @ 0.8σ level

FNAL W&C Seminar / November 11, 2005

Λ_b Lifetime: Outlook

- Our measurement of $\tau(\Lambda_{b})$ using 370 pb⁻¹ is competitive with the world's single best measurement
 - \rightarrow best by far in a fully reconstructed decay channel
- $\tau(\Lambda_{b})$ in $\Lambda_{b} \rightarrow J/\psi \Lambda^{0}$ is statistically limited, with small systematics
- Adding new data to this analysis will be very interesting
 - \rightarrow precision will approach current world average
 - and continue to test the theory of *b*-hadron lifetimes

FNAL W&C Seminar / November 11, 2005

B_c Lifetime

The B_c meson is comprised of a charm and (anti-)bottom quark \rightarrow decay of either contributes to B_c lifetime

This is currently the world's best measurement of the B_c lifetime

Mark Neubauer

$B_{c} \rightarrow J/\psi \pi$

- New! (Analysis using 0.8 fb⁻¹ just blessed yesterday)
- B_c not produced at B factories
- Full reconstruction allows for precise mass measurement

Analysis:

- Tune selection on data: $B_u \rightarrow J/\psi K$ reference decay
- After approval, open box
- Wait for events to become a significant excess
- Measure properties of the B

FNAL W&C Seminar / November 11, 2005

$B_{_{C}} \rightarrow J/\psi \ \pi$

Mark Neubauer

B_s Lifetime

Mark Neubauer

B_s Mixing: Motivation

- Neutral B mesons flavor oscillate • Measure fundamental SM parameters $B_{d}: \Delta m_{d} = \frac{G_{F}^{2} m_{W}^{2}}{6\pi^{2}} m_{B_{d}} |V_{td}|^{2} \eta_{B} S_{0}(x_{t}) \cdot \hat{B}_{B_{d}} f_{B_{d}}^{2}$ $B_{s}: \qquad (s) \qquad (B_{s}) (ts) \qquad (B_{s}) (B_{s})$ • Hadronic uncertainties cancel in ratio $\Delta m_{s} = m_{B_{s}} |V_{ts}|^{2} (\hat{B}_{B_{s}} f_{B_{s}}^{2}) = \xi^{2}$
 - $\frac{\Delta m_s}{\Delta m_d} = \frac{m_{B_s}}{m_{B_d}} \left| \frac{V_{ts}}{V_{td}} \right|^2 \left(\frac{\hat{B}_{B_s} f_{B_s}^2}{\hat{B}_{B_d} f_{B_d}^2} \right)$
 - Lattice computation:

 $\xi = 1.21 \pm 0.022^{+0.035}_{-0.014}$

- \rightarrow Determine $|V_{ts}|/|V_{td}|$ to ~ 2.5%
- Δm_s sensitive probe of new physics

Mark Neubauer

B_s Mixing: Analysis Overview

 $\Delta m_s >> \Delta m_d \rightarrow challenging!$

- Sample: collect $B^+/B^0/B_s$ decay sample using displaced track trigger, reconstructed in semileptonic (IDX) and hadronic ($D\pi(\pi\pi)$) decay mode
- Proper time measurement $ct \rightarrow$ understanding of $\sigma_{_{ct}}$ crucial!
- Flavor tagging \rightarrow calibrate opposite-side taggers on B⁰/B⁺ sample
- Measure time-dependent asymmetry:

$$\mathcal{A}(t) \equiv \frac{N(t)_{mixed} - N(t)_{unmixed}}{N(t)_{mixed} + N(t)_{unmixed}} = \mathcal{D}\cos(\Delta m_s t), \quad \mathcal{D} = 1 - 2P_{mistag}$$

Mark Neubauer

B_s Mixing: Improvements

Mark Neubauer

B_s Mixing: Hadronic Signals

~1,100 fully-reconstructed B_{s} candidates available

Mark Neubauer

B_s Mixing: Semileptonic Signals

$B_s \rightarrow lD_s X$, where $D_s \rightarrow \phi \pi$, K^*K , 3π

Higher statistics but worse *ct* resolution compared to hadronics

 $ct = \frac{L_{xy}}{\gamma\beta}; \gamma\beta = \frac{p_T(B)}{M(B)} = \frac{p_T(\ell D)}{M(B)} * 1/K \text{ (K from MC)};$ $\sigma_{ct} = \left(\frac{\sigma_{L_{xy}}}{\gamma\beta}\right) \oplus \left(\frac{\sigma_{\gamma\beta}}{\gamma\beta}\right) * ct$

Low *ct* candidates have better resolution but worse S/B

Mark Neubauer

B_s Mixing: ∆m_d cross-check

$\boldsymbol{B}_{_{d}}$ mixing: Proof of principle and calibration of tagger performance

- For setting limit, knowledge of tagger performance is critical
 - \rightarrow measure tagging dilution in kinematically similar B⁰/B⁺ samples
- $\bullet\,\Delta m_{_d}$ and $\Delta m_{_s}$ fits are complex \rightarrow test fitter framework

Semileptonic modes:

 $\Delta m_d = 0.511 \pm 0.020 \text{ (stat)} \pm 0.020 \text{ (syst) ps}^{-1}$ total $\epsilon D^2 \text{(OST)} = 1.55 \pm 0.08 \text{ (stat)} \pm 0.03 \text{ (syst)} \%$

Hadronic modes:

 $\Delta m_d = 0.536 \pm 0.028 \text{ (stat)} \pm 0.006 \text{ (syst) ps}^{-1}$ total $\epsilon D^2 (OST) = 1.55 \pm 0.16 \text{ (stat)} \pm 0.05 \text{ (syst)} \%$

PDG 2005: $\Delta m_d = 0.505 \pm 0.005 \text{ ps}^{-1}$

FNAL W&C Seminar / November 11, 2005

B_s Mixing: Δm_s Results

Semileptonic modes

Sensitivity: 10.4 ps^{-1} 95% CL Limit: 6.7 ps^{-1}

Hadronic modes

FNAL W&C Seminar / November 11, 2005

B_s Mixing: Combined CDF Result

B_s results from CDF \rightarrow pushing the world avg (previous: $\Delta m_s > 14.4 \text{ ps}^{-1}$)

Mark Neubauer

B_s Mixing: Outlook

Long-term projections for Δm_s measurement

"current" : Winter 2005 results baseline : +1% ϵD^2 , +10% vertexing stretched : +3% ϵD^2 , +20% vertexing

Coming improvements in:

- More data (×2 already on tape)
- Same Side Kaon Tagging
- Additional trigger path
- Add satellites in hadronic modes
- Re-optimize event selection (NN)
- m(lD) dependent k-factor binning
- Combined opposite-side taggers
- \bullet Better understanding of $\sigma_{_{\rm ct}}$

Projections based upon Winter 2005 results, \rightarrow new projections coming

FNAL W&C Seminar / November 11, 2005

Summary

- New measurements of the Λ_{b} , B_{c} , and B_{s} lifetimes
 - $\rightarrow \Lambda_{b}$ and B_{s} are competitive with world's best measurements
 - \rightarrow B_c is world's best single measurement

(also B_c in exclusive decay > 6σ , world's best mass measurement)

- New B_s mixing results push the world average Δm^2 limits
 - \rightarrow more improvements of the analysis on the way!
- These analyses are all limited by statistics
 - \rightarrow substantial improvement with more data

Physics of lifetimes and mixing at CDF is at an exciting stage!

Mark Neubauer

Mark Neubauer

PDL Error and Mass Error

FNAL W&C Seminar / November 11, 2005

FNAL W&C Seminar / November 11, 2005

Fit Results: $B^+ \rightarrow J/\psi K^+$

FNAL W&C Seminar / November 11, 2005

Fit Results: $B^+ \rightarrow J/\psi K^{*+}$ $\textbf{B}^{\!\pm}\!\!\rightarrow\textbf{J/}\psi~\textbf{K}^{^{\!\!\star\!\pm}}$ $B^{\pm} \rightarrow J/\psi K^{*\pm}$ Candidates per 5um 00 00 05 Data Candidates per 40µm 0 0 Signal Data - Bkg - Signal+Bkg Signal Bkg 100 Signal+Bkg 50 ᅇ 10 20 30 40 50 60 70 80 90 100 $c\tau = 471.2 \pm 28.7 \ \mu m$ Proper Decay Length Error (µm) $B^{\pm} \rightarrow J/\psi K^{*\pm}$ Candidates per 2.5 MeV/c² 0 0 0 0 0 0 Data Signal Bkg Signal+Bkg

3000

1000

2000

Proper Decay Length (µm)

FNAL W&C Seminar / November 11, 2005

5.25

5.3

5.35

μμππ mass (GeV)

10

5.2

4000

Mark Neubauer

-2000

-1000

0

Systematics: V⁰ Pointing

- Limit failure of V to point back to J/ψ vertex
- ΔL_{XY} variable (figure)
- Enters selection through the vertex constraint χ^2 cut
- Only causes bias if $\Delta L_{_{XY}}$ or $z_{_0}$ pulls are ct dependent
- Pulls measured in data (K_s)
- Systematic constrained to be small, mostly because probability cut 10⁻⁴ is loose

FNAL W&C Seminar / November 11, 2005

Systematics: V⁰ Pointing

FNAL W&C Seminar / November 11, 2005

Systematics: V⁰ Pointing

- Fit ΔL_{xy} and z_0 pulls in bins of $c\tau$
- Fit slopes of pull shapes $\sigma(c\tau)$ and $\mu(c\tau)$
- Toy MC integrate over 5-d χ^2 using $\sigma(c\tau)$ and $\mu(c\tau)$
- Calculate $c\tau$ bias of toy MC events
- Find mean+RMS of bias for slopes consistent w/ data

Mark Neubauer

Λ_b Candidate Event Display

FNAL W&C Seminar / November 11, 2005

B_c Lifetime: Fit w/Backgrounds

FNAL W&C Seminar / November 11, 2005

New Physics in Loops?

 Δm_{S} [1/ps]

SM Expectation

-0.5

0

Supersymmetry model

- + gluino in loop
- + squarks in loop
- + describes all data
- + allows very high Δm_s
- + Δm_s excludes models

$\rightarrow \Delta m_s$ sensitive to New Physics

Mark Neubauer

FNAL W&C Seminar / November 11, 2005

0.5

0

 $\boldsymbol{s}_{\boldsymbol{\phi}K}$

B Mixing: Lifetime Measurement

Bias is *ct* due to trigger cuts (in hadronic & semileptonic decays:

- 2 displaced trigger tracks
- turn-on: $d_0 \ge 120 \ \mu m$
- turn-off: $d_0 \le 1 \text{ mm}$
- selection increases bias

Adjust probability density:

 $\rho(t) = N(e^{t/\tau} \times G(\sigma_{ct})) \epsilon(t)$

The bias cancels for B_s mixing!

For semileptonic decays, correct for missing momentum

FNAL W&C Seminar / November 11, 2005

B_s Lifetime: Hadronic

Combined $\tau(B_{n})$ consistent w/ PDG (statistical errors only, work in progress)

FNAL W&C Seminar / November 11, 2005

B_s Mixing: PDL Resolution

Mixing sensitivity:

$$V = \sqrt{\frac{N_S \epsilon D^2}{2}} \exp\left(-\frac{(\Delta m_s \sigma_{ct})^2}{2}\right) \sqrt{\frac{N_S}{N_S + N_B}}$$

PDL resolution limiting factor at high Δm_s

 $\boldsymbol{\sigma}_{_{ct}}$ determined from high statistics calibration data sample

Study dependence on several variables: isolation, vertex fit $\chi^2,\,...$

Mark Neubauer

* not include <k-factor> = 0.85

B_s Mixing: Systematics

• A and σ_A are correlated systematics need to be evaluated with many toy MC experiments for each Δm_s value

- Measurements dominated by statistics
- With increase in statistics, leading systematics will go down

Mark Neubauer

Semileptonic Decay ID X

17,084 signal events

lepton in trigger lepto

lepton not in trigger

FNAL W&C Seminar / November 11, 2005

B^o Mixing: Exclusive Decays

Tagger performance $\varepsilon D^2 = 1.55 \pm 0.16 \pm 0.05\%$

Result Δm_d (blessed) 0.536 ± 0.028 (stat) ± 0.006 (sys) ps⁻¹ 0.505 ± 0.005 ps⁻¹ (PDG 2005)

About results

- + see clear signal
- + only opposite side tags

FNAL W&C Seminar / November 11, 2005

B Flavor Tagging

Opposite Side Tagging:

• Jet-Charge-Tagging:

sign of the weighted average charge of opposite B-Jet high efficiency & low dilution

• Soft-Lepton-Tagging:

identify soft lepton (e, μ) from semileptonic decay of opposite B: $b \rightarrow l^- X$ (BR $\approx 20\%$), low efficiency but high dilution

• Kaon-Tagging:

due to $b \rightarrow c \rightarrow s$ it is more likely that a \overline{B} meson contains a K^- than a K^+ in the final state (not implemented at CDF)

Same Side Tagging:

• $B_{s/d}$ is likely to be accompanied close by a K^+/π^+ (ongoing effort but not used in current analysis)

FNAL W&C Seminar / November 11, 2005

Same Side Tagging

some of the possible species of particles produced in the fragmentation of a *b* quark to a *B* meson. *Mark Neubauer* FNAL W&C Seminar / November 11, 2005

SSKT: Work in Progress

- There is no straight forward way to measure the tagger dilution on data unless we observe mixing
- But we have to know the dilution to set a limit

Have to rely on SSKT Monte Carlo predictions

Tuning is in progress!

FNAL W&C Seminar / November 11, 2005

Amplitude Scan Method

B⁰ example scan Winter 2005 analysis

• Introduce amplitude A into the unbinned ML fit:

 $\mathcal{L} \sim \frac{1 \pm \mathbf{A} \cdot D \cdot \cos(\Delta m_s t)}{2}$

- Fit A for each Δm_s hypothesis
- \bullet Record A and $\sigma_{_{\!A}}$ at each $\Delta m_{_{\!S}}$
- Signal ⇔ unit amplitude, else A consistent with 0

Mark Neubauer

- Sensitivity is smallest $\Delta m_{_{\rm S}}$ for which A + 1.645 $\sigma_{_{\rm A}}$ = 1
- Exclude $\Delta m_s^{}$ @ 95% C.L. for A + 1.645 $\sigma_A^{}$ < 1