Search for Squark and Gluino Production In Missing Energy+Jets at CDF

Giulia Manca (University of Liverpool) On behalf of the CDF collaboration SUSY05, Durham (UK) 18-23 July 2005

Outline

CDF and the Tevatron
Theory and Motivation
Analysis strategy
Kinematic selection
Results
Conclusions and Outlook

CDF and the Tevatron

3

CDF and the Tevatron

4

Reference SUSY points

8

- Chosen region not excluded by other experiments
- Simulated several mSUGRA points in $M_0-M_{1/2}$ with $A_0=0$, sign(μ)=-1, tan β =5 and third generation removed from $2 \rightarrow 2$ process (*Isajet*)
- Chosen 3 points to optimise the analysis selection criteria

GeV/c²

			_				
Sample	NLO Sigma (pb)	Mo	M _{1/2}	M(q̃)	M(ĝ)	$M(\tilde{\chi^{\pm}}_1)$	M(LSP)
s35	0.26	144	148	340	357	110	59
s41	0.17	149	156	375	394	116	62
s46	0.03	153	164	390	414	122	65

Analysis Strategy

COUNTING EXPERIMENT

9

- Optimise selection criteria for best signal/background value;
- Apply selection criteria to the data
- Define the signal region and keep it blind

• Test agreement observed vs. expected number of events in orthogonal regions ("control regions")

•Look in the signal region and count number of SUSY events !!

Or set limit on the model

10

Trigger and Event pre-Selection

- Trigger on Missing
 Transverse Energy>35 GeV
 + 2 jets (E_T>10 GeV)
- Apply "Basic Cuts" to clean up the sample and eliminate effects MC does not reproduce
 - beam losses
 - cosmic and beam halo muons
 - detector failures (hot/dead towers, poorly instrumented regions,...)

PROCESS	MC generator	Cross section calculation
Z+jets	ALPGEN+Herwig	NLO MCFM
W+jets	ALPGEN+Herwig	NLO MCFM
WW	ALPGEN+Herwig	NLO MCFM
ttbar	Herwig	NLO ^[1]
Hadron Jets (QCD)	Pythia	DATA

^[1] Cacciari et. al., JHEP 404, 68(2004)

12

Hadron Jets Background

- Selected region dominated by Jet events in the data satisfying the pre-selection criteria
- Compared distributions MC events to data and obtained scale factor to the MC ~1.0

Analysis Event selection

Selection criteria optimised using S/\sqrt{B}

	ANALYSIS SELECTION CRITERIA			
	$\Delta \phi$ (MET, jet) > 0.7 for all 3 jets	•	— To reject QCD	
	EM Fraction < 0.9 for all 3 jets	•	To reject	
	$E_T(1^{st} jet) > 125 GeV; E_T(2^{nd} jet) > 75 GeV$		electrons	
	MET>165 GeV		Signal	
	H _T ≡E _T 1+E _T 2+E _T 3 >350 <i>Ge</i> V		S region	
Jsin	g these selection criteria:		(254pb ⁻¹)	
Jsin	g these selection criteria: SM Processes	Ex	(254pb ⁻¹) pected Events	
Jsin El	g these selection criteria: SM Processes ectroweak (<u>W->lv+nj</u> ,Z->ll+nj,ttbar,WW)	Ex	(254pb ⁻¹) pected Events 3.95	
Jsin El	g these selection criteria: SM Processes ectroweak (<u>W->lv+nj</u> ,Z->ll+nj,ttbar,WW) QCD	Ex	(254pb ⁻¹) pected Events 3.95 0.21	
Jsin	ng these selection criteria: SM Processes ectroweak (W->lv+nj,Z->ll+nj,ttbar,WW) QCD SUM SM Backgrounds	Ex	(254pb ⁻¹) pected Events 3.95 0.21 4.1 ± 1.5	

SUSY Monte Carlo

Different mSUGRA parameter values have been studied: number of flavours, tan β and sign of μ for the same value of $M_0-M_{1/2}$.

Control Regions

15

Several regions different from the signal region ("control regions") examined to verify the robustness of the Monte Carlo predictions: T HT 1092 analysed two: Mean x Mean y RMS x **CR1**: RMS y Veto electron (EM fraction < 0.9) CR1 -> QCD dominated Signal

269.1 80.4

84.9

19.9

450

500

250 å Region Hadron jets: 165 ± 6 CR2 EW: 36 + 2200 **Only** Tot Expected: 201 ± 6 statistical 150 Observed: 183 ± 14 ıncertaintv **CR2**: 100 **Require EM fraction > 0.9** 50 L 250 300 150 200 350 400 -> EW and QCD similar CDF Run II preliminary, 254 pb^{T1} (GeV) CDF Run II preliminary - Data

Systematic Uncertainties

Source	Uncertainty on final background estimate
Luminosity	6%
Jet Energy Scale	29%
Jets Background Estimation	1%
ttbar cross section	3.6%
WW cross section	0.5%
W+jets cross section	14.6%
Z+jets cross section	3.7%
TOTAL	33.4%

*1*7

Looking at the Signal Region

- In L = 254 pb^{-1} :
 - SM Expected Events = 4.1 ± 1.5
 - Observed Events = 3

Event 1

 $H_T = E_T(1st) + E_T(2nd) + E_T(3rd) = 404 GeV$

G. Manca (U.Liverpool) SUSY05, Durham (UK), 20 July 2005

Conclusions and Outlook

- Performed blind search for squark and gluinos over 254 pb-1 CDF RUN II data
- Selection criteria have been optimised for several mSugra scenarios:
 - Find relatively small dependence on tanβ, sign of μ and and number of flavours
 - Demonstrated good understanding of data and SM backgrounds in "control regions"
 - No evidence for Squarks and Gluinos
 - Data agree with background estimate
- Full interpretation in progress
 - Future improvements with increased luminosity

BACK-UP SLIDES

The CDF-II detector

The CDF-II detector

Calorimeter simulation: GFLASH for showering COT Muon Chambers Plug Calorimeter Silicon

G. Manca (U.Liverpool) SUSY05, Durham (UK), 20 July 2005

Beam Background Cuts

$$EEMF = \frac{\sum_{jets} (E^{jet}_{T} \times f^{jet}_{EMC})}{\sum_{jets} (E^{jets}_{T})} > 0.15$$

$$ECHF = 1/N_{jets} \times \sum_{jets} \frac{\sum_{tracks} (P^{track}_{T})}{E^{jet}_{T}} > 0.15$$

Only for central (letal < 1.1) jets

Criteria to select QCD region in data

In JET20 data:

Basic cuts

- Et(j1)>90 GeV, Et(j2)>60 GeV
- MEt Significance=MEt/ $\sqrt{\Sigma}_{met towers}$ <3.5 GeV^{-1/2}
- Et(j1)+Et(j2)+Met<100 GeV

After Basic Cuts

Delta Phi Optimisation

G. Manca (U.Liverpool) SUSY05, Durham (UK), 20 July 2005

Control Regions I

T_HT 1092

Three regions orthogonal to the signal region ("Control regions") examined to verify the robustness of the Monte Carlo predictions CRO: QCD dominated

Efficiency of the signal points

Using these selection criteria:

Samples	Expected Events (254pb ⁻¹)	Efficiency (%)	S/√(B)
Signal s35	4.8 ± 0.1 ± 0.7	7.2 ± 0.2 ± 0.9	2.3 ± 0.8
Signal s41	3.6 ± 0.1 ± 0.6	8.4 ± 0.2 ± 1.1	1.8 ± 0.6
Signal s46	0.7 ± 0.0 ± 0.2	9.7 ± 0.2 ± 1.3	0.4 ± 0.1
SM Background	4.1 ± 0.6 ± 1.4		

30 Different effects that can distort the measured Jet energy

Correction	Reason	Method	Contri bution	Plot
Absolute Scale	Non-linearity and energy loss in the un- instrumented regions of each calorimeter	We measure the fragmentation and single particle response in data and tune the Monte Carlo to describe it Pythia Monte Carlo	100 GeV: 2.2% 15 GeV: 1.8%	Abs Corr
Relative Scale	Difference in response in the forward calorimeter respect to the one of the central	Scale the response in the forward to the central Pythia and Data di-jet events	100 GeV: 0.5% 15 GeV: 1.5%	Rel Corr
Multiple Interactions	The energy from different ppbar interactions during the same bunch crossing falls inside the jet cluster, increasing the measured energy of the jet.	subtracts this contribution in average as function of # vertices Minimum Bias Data	100 GeV: 0.05% 15 GeV: 0.4%	MI corr
Underlying event	The energy associated with the spectator partons in a hard collision event	This contribution subtracted from the particle-level jet energy. Minimum Bias Data (1vertex)	100 GeV: 0.1% 15 GeV: 1.0%	UE corr
Out-of-cone	Corrects the particle-level energy for leakage of radiation outside the clustering cone used for jet definition, taking the "jet energy" back to "parent parton energy".	Difference between Data and Monte Carlo for different topologies.	100 GeV: 1.5% 15 GeV: 7.0%	OO corr
TOTAL				

Relative Scale

<u>32</u>

Multiple Interactions Correction

G. Manca (U.Liverpool) SUSY05, Durham (UK), 20 July 2005

Underlying Event

G. Manca (U.Liverpool) SUSY05, Durham (UK), 20 July 2005

Out-of-cone corrections

G. Manca (U.Liverpool) SUSY05, Durham (UK), 20 July 2005

Total correction

G. Manca (U.Liverpool) 505105, Durnam (UK), 20 July 2005

G. Manca (U.Liverpool) SUSY05, Durham (UK), 20 July 2005

The Events

195.6

166.6

362.3

Event 2

Event 3

