

Extra Dimension

Searches at Accelerators

Tracey Berry University of Liverpool

Tracey Berry

Outline

Why search for Extra Dimensions (ED) ? Motivation & different models: ADD, RS, TeV⁻¹ How are ED detectable at accelerators? **Signatures** Where are searches being performed? Accelerator facilities What searches are being performed? Search channels What are the results? Analysis descriptions What are the future prospects? LHC MC studies

Tracey Berry

Extra dimensional Models 🏄

Alternatives to SUSY for solving the hierarchy problem: M_{EW} (1 TeV) << M_{Planck} (10¹⁹ GeV)?

What are the experimental signatures at colliders?

Tracey Berry

Experimental Signatures for ADD

July 25-Aug 5, 2005

Experimental Signature for **RS** Model

 $d\sigma/dM_{10^{-2}}$

(pb/GeV)

KK excitations can be $]K/\overline{M}_{\rm Pl}$

resonance.

hep-ph0006041

excited individually on

Virtual Graviton exchange

Signature: an excess of events in dilepton/dijet/diboson channels

July 25-Aug 5, 2005

Experimental Signature for TeV-1 Size ED and KK Gauge Bosons

From 4-d point of view:

Mass of SM gauge bosons (M_n) that propagate in the ED are equivalent to towers of KK states with masses : $M_n = \sqrt{(M_0^2 + n^2/R^2)}$ where (n=1,2,...)

Potentially detectable consequences:

1) Mixing among the 0^{th} (SM gauge boson) and the nth-modes (n=1,2,3..) of the W and Z bosons. (Since the entire tower of KK states have the same quantum numbers as their 0^{th} -state gauge boson)

2) **Direct production and virtual exchanges** of the 0th-state gauge bosons, AND both direct production and virtual effects of the KK states of the W, Z, γ and g bosons at high energies

New Parameters

 $R=M_{C}^{-1}$: size of the compact dimension M_{C} : corresponding compactification scale M_{0} : mass of the SM gauge boson

hep-ph/9811291

Tracey Berry

ED Search Facilities

Tevatron, Fermilab, USA HERA, DESY, Hamburg

Tevatron: Highest energy collider operating in the world!

> Run I $\sqrt{s} = 1.8 \text{ TeV}$ Run II $\sqrt{s} = 1.96 \text{ TeV}$

Tracey Berry

Run I √s ~ 300 GeV Run II √s ~ 320 GeV

XXXIII SLAC Summer Institute July 25-Aug 5, 2005

LEP, CERN, Geneva

CERN: world's largest particle physics laboratory

LEP I $\sqrt{s} = 91 \text{ GeV}$ LEP II $\sqrt{s} = 136-208 \text{ GeV}$

General Particle Detection

> Both e and γ : deposit energy in the EM calorimeter (\rightarrow EM object)

- However, γ are uncharged, so leave no track in the tracking chamber
- Whereas e^{+/-} leave a track
- Muons: leave a track in the tracking chamber
 - deposit minimum energy in the calorimeters
 - leave tracks in the muon chambers

Tevatron Experiments: CDF & DO

Hermitic calorimeter (central & plug)/muon coverage \Rightarrow Excellent particle ID Precision tracking and silicon vertex detectors

Tracey Berry

HERA: H1 & ZEUS

H1 is a finely segmented calorimeterZEUS has a compensating calorimeterBoth have good hermetic muon coverage

Tracey Berry

Tracey Berry

Summary of Searches performed a

Signature		Experiment	Model	Emission		
Graviton Emission	$\gamma + ME_T$	LEP, CDF	LED	Şa		
	jets+ME _⊤	CDF, D0		a.a jet		
Graviton Exchange	μμ	CDF, D0	LED, RS	$LED \qquad jet(s)+E_{T}$		
	ee	CDF, D0				
	ee+γγ	D0		Exchange		
	γγ	CDF		G နေလာင္ ee µµ		
	e+/-X	H1	LED	g,q S St YY		
Boson Exchange	ee		TeV ⁻¹	LED RS TeV-1		
5						

ED Searches

		1				
Signature		Experiment	Model	Emission		
Graviton	$\gamma + ME_T$	LEP, CDF	LED	<u>S</u>		
Emission	jets+ME _T	CDF, D0		g,q jet		
Graviton	μμ	CDF, D0	LED, RS	$LED \qquad jet(s) + \mathcal{E}_{T} \\ \gamma + \mathcal{E}_{T}$		
Exchange	ee	CDF, D0				
	ee+γγ	D0		Exchange		
	γγ	CDF		G ςννγς ee μμ		
	e+/-X	H1	LED	g,q z t yy		
Boson	ee		TeV ⁻¹	$\int \frac{\sqrt{g}}{\sqrt{f}} \sqrt{f}$		
Exchange						

G emission: LEP γ + ME_T

G emission: LEP γ + ME_T

G emission: LEP γ + ME_T

Lower limits on the gravity scale (M_D) derived individually by each experiment as functions of number of ED (n) Results are combined $\sigma \alpha (1/M_D)^{n+2}$

Tracey Berry

G Emission: CDF: γ +ME_T

CDF also search for G emission: $\gamma + ME_T$

Data in good agreement with SM

ED Searches

Signature		Experiment	Model	
Graviton	$\gamma + ME_T$	LEP, CDF	LED	Emission
Emission	jets+ME _T	CDF, DO		g,g
Graviton	$ee + \gamma\gamma$	DO	LED, RS	g,q jet(s)+,E _T
Exchange	ee	CDF, D0		LED $\gamma + \not \!$
	μμ	CDF, D0		
	γγ	CDF		
	e+/-X	H1	LED	q,q,~~ ee µµ vv
Boson	ee		TeV ⁻¹	
Exchange				I FD RS TeV-1

Observed: 284 events Relative uncertainty on the signal acceptance 25 %

E_T (GeV)

220

D0 have/also search for G emission (Run I & II): Monojet $+ME_{T}$ presently their limits are not as restrictive as CDFs

Tracey Berry

XXXIII SLAC Summer Institute July 25-Aug 5, 2005

80

100

120

140

160

180

200

240

G Emission Summary

LEP and Tevatron results are complementary

For n>6: Tevatron limits best jet+ME_T

Tevatron better at large values of n, because of the higher energy, which is a bigger effect at larger values of n.

σ α total number of possible modes in the KK tower N_{KK} σ α N_{KK} α √(s-hat) But this is true for each ED, so σ α (√(s-hat))ⁿ

 \Rightarrow the difference in energy is a bigger effect for n=6 than n=2

Nd

ED Searches

Signature		Experiment	Model	Emission
Graviton	γ+ME _T	LEP, CDF	LED	<u>S</u>
Emission	jets+ME _T	CDF, D0		g,g jet
Graviton Exchange	ee+yy	D0	LED, RS	$LED \qquad jet(s)+E_{T} \\ \gamma + E_{T} $
	ee	CDF, D0		
	μμ	CDF, D0		Exchange
	γγ	CDF		G ξγγγς ee μμ
	e+/-X	H1	LED	g,q S Str YY
Boson Exchange	ee		TeV ⁻¹	LED RS TeV-1

ED Searches

Many different channels in which G exchange could be detected
 G exchange sensitive to several ED models

- similarities/distinct features of their search strategies....

Search for G Exchange?

Similarities

Search Signature

Deviations in (ee, $\mu\mu$, $\gamma\gamma$) cross sections (σ) and angular distributions from SM processes caused by G exchange

✓ Clean experimental signature (ee,µµ) even in a hadron collider ✓ Low backgrounds & Z^0 peak used as a calibration point (ee,µµ)

Distinguish New Physics Models Resonance in RS model and broad change in σ in ADD model Spin 2 graviton – used to distinguish between other new physics

25

Χ?

Tevatron Exchange Search Strategies

CDF Search Strategy: ee, μμ, γγ

- Perform signature based searches Compare data to expectation 1D fits in invariant mass performed (and angular distribution studied)
- Determine spin dependent acceptance and then σ.BR
- Interpret data & set limits on many new models!
 - E.g. (ee & μμ): Spin-0 : RPV sneutrinos Spin-1 : Z', Technicolor ρ, ω Spin-2 : RS G, LED, etc..
- D0 Search Strategy: ee, μμ, γγ
- Perform more ED specific searches
- > Optimise for specific search:
 - ADD case: combine $ee + \gamma\gamma$ to gain in efficiency
- 3D fits in angular distribution and invariant mass performed

Tracey Berry

Χ?

ED Searches

ADD: many Large ED in which gravitons can propagate

This maximises reconstruction efficiency....

Tracey Berry

Similarities

• Both e and γ deposit energy in the EM calorimeter (\rightarrow EM object)

Differences

- However, $\boldsymbol{\gamma}$ are uncharged, so leave no track in the tracking chamber
- Whereas e^{+/-} leave a track

Inefficiencies arise if:

- γ ID requires no track, but γ converts (\rightarrow ee)
- e ID requires a track, but loose track due to imperfect track reconstruction/crack

To maximise reconstruction efficiency: D0 combine $ee + \gamma \gamma \Rightarrow diEM$ search

Tracey Berry

D0 ee+ $\gamma\gamma$ ADD LED

D0 perform a combined fit of the invariant mass and angular information Fit combined $M_{ee'\gamma\gamma}$ and $\cos\theta^*$ spectrum to extract limits

Tracey Berry

Hints of New Physics?

8 events with M>350 GeV

➤ 6 form a bump around 400 GeV Z'→ee resonance?

> No: have 1 or 0 tracks AND
> Bump twice as narrow as expected from a narrow resonance smeared with typical D0 EM calorimeter resolution

> 2 highest mass events:

have very low $\cos\theta^*$ (0.01, 0.03) ⁻ One is a e⁺e⁻ pair and the other $\gamma\gamma$

⇒ excellent candidates for new physics beyond the SM!

i.e. possess kinematics typical of signal from large ED. (Very high scattering angle: close to $\pi/2$.)

Intriguing events – but consistent with the SM

Tracey Berry

D0's highest mass event

Run 177851 Event 28783974 Thu Dec 4 18:34:18 2003

E scale: 224 GeV

DO's highest-mass DY candidate ever observed!

"Event Callas"

Looking forward to results with more data from Run II (higher statistics)!

Tracey Berry

XXXIII SLAC Summer Institute^{3.7} July 25-Aug 5, 2005

G Exchange: CDF ee ADD LED

CDF perform a similar search Differences: ee channel only fit invariant mass only

$$N_{exp}$$
=11.1 N_{obs} =14 for M_{ee} >300 GeV/c²
 N_{exp} = 4.6 N_{obs} = 9 for M_{ee} >350 GeV/c²

$$σ = σ_{SM} + η σ_{INT} + η^2 σ_{KK}$$

Tracey Berry

D0 µµ ADD LED

D0 $\mu\mu$ search performed in a similar way to the D0 ee+ $\gamma\gamma$ search

Tracey Berry

Tevatron ADD LED limits

Both D0 and CDF have observed no significant excess

95% CL lower limits on fundamental Planck scale (M_s) in TeV, using different formalisms:

	GRW		HLZ for n=					Hewett
		2	3	4	5	6	7	λ=+1/-1
D0 Run II: μμ	1.09	1.00	1.29	1.09	0.98	0.91	0.86	0.97/0.95
D0 Run II: ee+γγ	1.36	1.56	1.61	1.36	1.23	1.14	1.08	1.22/1.10
D0 Run I+II: ee+γγ	1.43	1.61	1.70	1.43	1.29	1.20	1.14	1.28/NA
CDF Run II: ee	1.11		1.32	1.11	1.00	0.93	0.88	0.96/0.99

D0 Run II μμ result: tightest limits on LED from a single measurement in this channel! D0 combined $ee + \gamma\gamma$ Run I & Run II result is the most stringent limit on LED to date!

Tracey Berry

ED Searches

G Exchange: D0 RS $ee + \gamma\gamma$

RS: 1 extra compactified/warped ED in which G can propagate

Tracey Berry

Match a track in central tracking chamber Signal in the μ drift chambers (if fiducial) No opposite charge requirement, as determination of efficiency degrades fast at high p_T Cosmic Rays reduced by requiring μ arrival times at the μ detector consistent with those from beam collisions

Search Selection

2 high Pt (>15 GeV) μ

Minimum ionising particles

N_{obs}=17128

246pb⁻¹

Good agreement between data and expected background

G exchange: D0 RS

1D fits used to extract limits Different search windows are used for the $ee + \gamma\gamma$: $\mu\mu$ channels because of the different detector resolutions

G exchange: D0 RS

1D fits used to extract limits Different search windows are used for the $ee + \gamma\gamma : \mu\mu$ channels because of the different detector component resolutions

 $ee + \gamma\gamma$: EM energy determined using calorimeters

⇒ Symmetric windows width 6 x detector resolution

⇒ Asymmetric windows
 only lower mass bound used
 (due to long high-mass tail)

Tracey Berry

Tracey Berry

G exchange: D0 RS

Most restrictive limits on the RS model parameters to date!

Tracey Berry

G exchange: CDF RS ee (PP) CDF also performed a Run II RS search in the ee (& $\gamma\gamma$ separately) channel • include CC + CP (same as ADD ee data) CDF Run II Preliminary (173pb) add PP ee events **2**10³ SM prediction ee (PP) New for QCD dijets Search Selection Run II. 10² 2 forward EM clusters (PP) tau-tau, WW, WZ, ZZ, Events increase tt, W+jets isolated with $E_{T} > 25 \text{ GeV}$ acceptance! New tracking algorithm developed for P photons – require a silicon track 10-1 10-2 300 400 500 600 100 200 700 QCD dijets (misidentified jet) Meter (GeV) background larger in the plug region than in central $N_{exp}=2.7 \pm 0.7 N_{obs}=8$ for $M_{ee}>300 \text{ GeV/c}^2$ $N_{exp}=1.4 \pm 0.3$ $N_{obs}=3$ for $M_{ee}>350$ GeV/c² XXXIII SLAC Summer Institute 43 Tracey Berry

July 25-Aug 5, 2005

G exchange: CDF RS yy

Tracey Berry

XXXIII SLAC Summer Institute July 25-Aug 5, 2005 44

G Exchange: CDF RS µµ

CDF RS Graviton Limits

Setting 95 % C.L. upper limits on σ .BR($\sigma \rightarrow \gamma \gamma/II$):

- $\gamma\gamma$: Like D0 ee+ $\gamma\gamma$, CDF use $\pm 3\sigma$ windows around M_G, but in 1D only
- $ee + \mu\mu$: CDF use a binned likelihood method to fit 1D M_{II} spectra

G exchange: CDF RS Searche

CDF perform 1-D fits, but also study (ee, $\mu\mu$, $\gamma\gamma$) angular distributions

ED Searches

Signature		Experiment	Model	Emission
Graviton	$\gamma + ME_T$	LEP, CDF	LED	ŞG
Emission	jets+ME _⊤	CDF, D0		a.a jet
Graviton	ee+yy	D0	LED, RS	$LED \qquad \qquad$
Exchange	ee	CDF, D0		
	μμ	CDF, D0		Exchange
	γγ	CDF		G ζννγς ee μμ
	e+/-X	H1	LED	g,q s s y yy
Boson Exchange	ee		TeV ⁻¹	LED RS TeV-1

H1 LED Searches

H1 Search Strategy Perform signature based searches

- Measure inclusive σ's e^{+/-}p→e^{+/-}X over a huge range in 4-momentum transfer (Q²)
- Compare data to expectation

- Interpret data & set limits
 on many new models!
 - E.g. Contact interactions Leptoguarks

R-parity violating squarks Search for e or q substructure (Form Factor Analysis)

Tracey Berry

XXXIII SLAC Summer Institute July 25-Aug 5, 2005

 \Rightarrow Fix the SM and its parameters, in particular the parton distributions, using experimental data at low Q², where the theory is well established.

Then extrapolate the prediction towards Q², (where distance scales down to 1/1000 of the proton radius are probed), where deviations due to new physics are expected to be most prominent & could indicate the presence of quark substructure or new particles

50

In DIS, G-exchange may contribute to the e-q subprocess, but the new interaction also induces e-g scattering which is not present in the SM.

Tracey Berry

ED Searches

Signature		Experiment	Model	Emission	
Graviton	$\gamma + ME_T$	LEP, CDF	LED	<u>S</u> G	
Emission	jets+ME _⊤	CDF, D0		g,g jet	
Graviton	ee+yy	D0	LED, RS	LED $jet(s) + E_T$ $\gamma + E_T$	
Exchange	ee	CDF, D0			
	μμ	CDF, D0		Exchange	
	γγ	CDF		G နေလာင္ ee µµ	
	e+/-X	H1	LED	g,q s t yy	
Boson Exchange	ee	DO	TeV-1	LED RS TeV-1	

TeV⁻¹ ee Search

First dedicated experimental search for TeV⁻¹ ED at a collider

Search for effects of virtual exchanges of the KK states of the Z and γ

Search Signature: Signal has 2 distinct features:

➢enhancement at large masses (like LED)

>negative interference between the 1st KK state of the Z/ γ and the SM Drell-Yan in between the Z mass and M_c

Search Selection 200pb⁻¹

Same as LED diEM search except: at least 1 EM cluster has to have a matching track & no track isolation requirement

Data are in excellent agreement with Drell-Yan production, so proceed to set limits...

Tracey Berry

TeV⁻¹ ee D0

Summary of Present Limits But what of the Future...?

➢Present limits are up to ~ 1TeV

≻Future: More data to be analysed and to come:

DeliveredHERA: $\sim 220pb^{-1}$ Tevatron: > 1 fb^{-1}Analysed $\sim 80pb^{-1}$ $\sim 400 pb^{-1}$ Goal>700pb^{-1} (2007)4.4-8.5 fb^{-1} (2009)

Promising observation potential, hope to discover ED if they exist! Or extend limits: Tevatron Run IIa (2 fb⁻¹) extend limits: ADD: up to about $M_s = 2$ TeV

RS: m_1 from 0.5 to 1 TeV for k/M_{Pl} 0.01 to 0.1

And after that....?

Tracey Berry

Tracey Berry

LED ADD: G Direct Emission

July 25-Aug 5, 2005

LED ADD: Virtual G Exchange

channel	Luminosity		δ = 2	δ = 3	δ = 4	δ = 5
γγ	10 fb ⁻¹	M _s ^{max} (TeV) S/B	6.3 36/18	5.6 36/18	5.1 39/25	4.9 34/13
	100 fb ⁻¹	M _s ^{max} (TeV) S/B	7.9 50/53	7.3 62/96	6.7 55/72	6.3 51/53
"	10 fb ⁻¹	M _s ^{max} (TeV) S/B	6.6 33/11	5.9 31/8	5.4 30/6	5.1 30.6
	100 fb ⁻¹	<i>M_s^{max}</i> (TeV) S/B	7.9 45/48	7.5 38/21	7.0 36/16	6.6 29/6
γγ+ ℓℓ	10 fb ⁻¹	M _s ^{max} (TeV)	7.0	6.3	5.7	5.4
	100 fb ⁻¹	M _s ^{max} (TeV)	8.1	7.9	7.4	7.0

ATLAS extends reach up to ~ 6/7 TeV with 10 fb⁻¹/100 fb⁻¹ (n dependent)

Tracey Berry

RS constraints

LHC completely covers the region of interest

(hep-ph 0006041) Tracey Berry

RS constraints

Distinguish RS model from other new physics

Tracey Berry

XXXIII SLAC Summer Institute July 25-Aug 5, 2005

(hep-ph 0006041)

TeV⁻¹ Sized ED & KK Gauge Boson

Fermions are open strings excitations Search for KK excitations of $Z_1 \gamma_1 \dots$ with ends stuck to our brane but gauge Bosons could also propagate in the bulk.

Reach: Possible to detect resonance up to 5.8 TeV

In absence of peak a 95% CL of 13.5 TeV can be achieved

G. Azuelos, G. Polesello (Les Houches 2001 Workshop Proceedings)

Tracey Berry

TeV⁻¹ Sized ED & KK Gauge Boson

Distinguish RS model from other new physics

Forward-backward asymetries:

Tracey Berry

Concluding Remarks

No significant sign of new physics!
Increasing number of channels being used to search for EDs Many searches underway:

e.g. pp→ττ, pp→jet jet, pp→G→ZZ

Existing analyses being refined & improved Updates imminent e.g. pp→ee, pp→jet+ME_T,
Present limits are up to ~ 1TeV
LHC will enable searches probe up to ~ 5-6 TeV

Will HERA/Tevatron discover new physics before LHC?