

Higgs and SUSY Searches at CDF

Alexei Safonov University of California, Davis

SLAC Experimental Seminar, April 26, 2005

Fermilab Tevatron

- Particle beams collide at experiment sites (CDF, DØ) every 396 ns
 - C.M. Energy: 1.96 TeV
- Over 700 pb⁻¹ of data on tape
 - Current analyses 200-390 pb⁻¹
- Run 2 goal: 4.4-8.5 fb⁻¹
 Take data until 2009
- Energy Frontier until LHC turn-on

Luminosity

Store efficiency

3500

Store Number

4000

Store efficiency, 20X average

3000

2000

2500

1000

1500

• Data taking efficiency ~80%

CDF Detector

Significant upgrades for Run II

- Highlights:
 - Excellent central tracking
 - Drift chamber, $\eta \sim 1.2$
 - Silicon tracking up to η~2.0
 - Calorimeter: HAD+EM
 - Towers $15^{0}(\Delta \phi) \ge 0.1(\Delta \eta)$
 - Extends to η~3.8
 - Robust Central Muon system

CDF Trigger System

- Rate of incoming events:
 - Every 396 ns
- Design specs: maximum rate of accepting events:
 - L1: 50 kHz
 - L2: 300 Hz
 - L3: 30 Hz
- L2 currently is the bottleneck
 - Exceeded design specs to operate at 380 Hz

Why Even Go Beyond SM?

- Likes:
 - Standard Model (SM) has been a major success
 - Good old renormalizable theory
 - Confirmed by precision measurements
- Dislikes:
 - Not "beautiful" enough:
 - Why particle masses vary wildly?
 - Unification not possible
 - Can it even work?
 - Divergences at high energy scales
 - Huge Higgs mass corrections
 - And more
 - No Higgs so far
 - Neutrino mass not zero
 - Does not explain dark matter

What is The Ultimate Theory?

- Requirements:
 - Should be simple and natural:
 - Few input parameters
 - No "fine tuning"

- Should explain everything

- All particles and interactions
- Particle masses and hierarchy
- Unification of interactions
- Dark matter and anti-matter
- Any candidates? Some...
 - SuperSymmetry (SUSY)
 - Little Higgs
 - Strings
 - Extra Dimensions

SuperSymmetry (SUSY)

• New symmetry:

- fermions \leftrightarrow bosons
- Doubles number of particles
- Almost "beautiful":
 - Hierarchy problem resolved and Higgs mass stabilized
 - LSP is a candidate for dark matter
 - Unification possible

ParticleSuperpartner
partnere,v,u,d $\widetilde{e},\widetilde{v},\widetilde{u},\widetilde{d}$ γ,W,Z,h $\widetilde{\chi}_{1}^{\pm},\widetilde{\chi}_{2}^{\pm},$ Dark Matter
Candidate $\widetilde{\chi}_{1}^{0}...\widetilde{\chi}_{4}^{0}$

$$m_{\tilde{l}} > 100 \,{}^{\text{GeV}\!/_{\text{c}^2}}$$

$$m_{\tilde{\chi}_1^0} > 43 \,{}^{\text{GeV}\!/_{\text{c}^2}}, m_{\tilde{\chi}_1^{\pm}} > 104 \,{}^{\text{GeV}\!/_{\text{c}^2}}$$

$$m_{\tilde{g}/\tilde{q}} > 195(300) \,{}^{\text{GeV}\!/_{\text{c}^2}}$$

Many Faces of SUSY

- Ain't easy to find, e.g. SUSY:
 - Many parameters, different symmetry breaking scenarios and particle mass spectra
 - Experimental signatures vary wildly
- Benchmark "model lines"

Scenario	LSP	Signature
MSSM	$\widetilde{\chi}_1^0$	leptons, jets+MET
mSUGRA	$\widetilde{\chi}_1^0 \widetilde{\mathcal{V}}$	leptons, jets+MET
High tanβ		light stop/stau, many taus in final state
RPV	varies	more leptons, less MET
GMSB	G	Leptons/photons+ MET
AMSB	$\widetilde{\chi}_1^{\pm} \widetilde{\chi}_1^0$	special treatment

- Or even better, look for signatures:
 - Bumps in the mass spectrum (new particles): e.g. Higgs(es)
 - Excess of events over SM prediction: e.g. tri-leptons

A Convenient Target

- Standard Model:
 - EWK symmetry breaking via Higgs mechanism generates particles masses
 - Single physical scalar H, coupling ~m_f
 - m_H from 114 to a couple of hundred GeV
- Higgs is unavoidable in most extensions of SM
 SUSY:
 - Similar mechanism, several Higgs particles: h, H, H+/-, A
 - Production is enhanced if $tan\beta$ is large
 - Little(st) Higgs:
 - Three-scale model, radiatively generated Higgs mass
 - Light Higgs h
 - Also heavier A,H,H+/-,H++/--

- Hence, Higgs is a convenient target for searches
 - At least we know what to look for

What we know about the Higgs

- Precision EWK:
 - Mass known within about 60 GeV, e.g. latest LEP results:
 - $M_{\rm H}$ =126+73-48 GeV
 - M_H<280 GeV @ 95% CL
 - Direct limit M_H>114 GeV

- While preparing for direct searches, focus on measuring the mass of the W and top quark
 - Tight constraints on Higgs mass
 - This is what CDF and D0 do best!

SM Higgs at the Tevatron

- gg→H dominates but dijet background too big...
- bb decay modes are best!

WH+ZH ~300 fb at 115 GeV

typical efficiencies ~ 2%

A daunting proposition!

CDF - b tagging

- Identifying b-jets is the key for low-mass Higgs boson searches.
- Layer 00, SVX-2 and ISL
 - Double-sided silicon microstrips: 800k channels!
 - r ~1.5 cm out to ~50 cm

 $\mathcal{E}_{b} \sim 45\%$ at high p_{T}

Mistag rates are typically at 0.5%

- Mass resolution improvements:
 - δ**Μ/Μ~10%**

- Can see $Z \rightarrow bb$ events:
 - signal size ok
 - resolution as expected
 - jet energy scale ok!

Search Channels - Low Mass

For m_H<135 GeV, bb decays dominate:

- clearly need excellent b tagging!
- need optimal bb mass resolution!
- need to understand background shapes!

WH Search Results

- Select events with p_T>20 GeV lepton triggers
- Require lepton, missing E_T, two jets with E_T> 15 GeV
- Demand at least one btagged jet
- Use bb mass distribution for signal sensitivity
 - Not yet challenging the Standard Model:
 - better resolution
 - improved tagging
 - need vvbb channel

Search Channels - High Mass

 $gg {\rightarrow} H {\rightarrow} WW {\rightarrow} \ell \ell_{\rm VV}$

 $ZH/WH \rightarrow WWW/ZWW$

(trileptons: rate too low)

H→WW Search

Perform likelihood fit using angular distribution

Extract 95% CL upper limit using Bayesian approach

- Select events with two high-p_T leptons (ee, eµ, µµ)
- Main background: WW

WH->WWW* Search

- Two LS leptons
- One lepton with P_T>20 GeV
- Optimize cuts on the second lepton:
 - P_T>18 GeV (for MH>160 GeV)
 - Vector sum of leptons transverse momenta (P_TII>35 GeV).

- No events observed
- Expected 0.95±0.61± 0.18 from SM sources
- 95% CL limits are thus set at 12 (8) pb for M_H=110 (160) GeV

Aren't We Forgetting Something?

- Taus:
 - Low-to-intermediate mass Higgs:
 - Second highest Br after b's
 - Much cleaner signatures can use gg→H
- So far, a bit exotic at hadron machines
 - Need to prove we know how to handle them
- Z→ττ Standard candle for taus
 - And also the largest irreducible background

Where Else Taus Get In?

• Consider standard trilepton search:

 $p\overline{p} \to \widetilde{\chi}_1^{\pm} \widetilde{\chi}_2^0 \to (\nu \widetilde{l})(l\widetilde{l}) \to (\nu l\widetilde{\chi}_1^0)(ll\widetilde{\chi}_1^0)$

- At tanβ >8 final state leptons are dominated by τ's.
- Very important at low tanβ too!

Hadronic Tau Reconstruction

- Main ingredients:
 - Charged tracks:
 - Excellent tracking (efficiency in high 90's, $|\eta| < 1$)
 - Calorimeter (energy) clusters:
 - Segmentation ($\Delta \eta = 0.1$) x ($\Delta \phi = 15^{0}$)
 - Typical tau size: $\Delta\theta \sim 5-10^{\circ}$
 - Poor resolution for hadronic energy measurement ($\delta E / E \sim 40\% / \sqrt{E}$)

- Neutral pions:

- Use ShowerMax (CES) Detector
 - strip/wire chamber inside EM calorimeter
 - Spatial resolution ~few mm
- Reconstruct π^0 s as 2D matches in CES
- Assign energy from EM calorimeter

• Energy: use tracks and π^0 's, avoid calorimeter

Tau Reconstruction in Numbers

- A concept of a pencil-like jet:
 - Particles in the core, nothing in the annulus
 - Isolation is the key
- Choices for isolation:
 - Nparticles=0 in the isolation annulus
 - Small SET of all particles
- Reconstruction efficiency:

- Full selection efficiency = reconstruction x identification
 - Typical CDF tau ID efficiency is ~60%
 - Jet fake rate ~0.3-0.7%

$Z \rightarrow \tau \tau$: Event Selection

- Central electron: E_T>10 GeV
- Hadronic tau: p_T>15 GeV
- Suppress DY(ee) and other "technical" backgrounds
- Optimize in $M_T(I,MET)$ vs ($p_T(I)$ +MET) plane

Z $\rightarrow \tau \tau$: **Proof of Principle**

- Good agreement
- An updated and optimized measurement is going through the CDF review
 - 320 pb-1 of data, ~350 Z events
- Our tools for identifying taus work!

Search for $H \rightarrow \tau \tau$

• Selections similar to $Z \rightarrow \tau \tau$

- Slightly tighter cuts
- Electron and muon channels combined
- Fake rate technique for jet backgrounds

- Fit mass spectrum to combination of Higgs, Z, and background
- Not too bad for a first shot
 - Updated measurement in in the CDF pipeline
 - Have a few tricks to use
 - Expect to do better soon

Limits on MSSM Higgs $\rightarrow \tau \tau$

MSSM Higgs + b(b)

bH/bA/bh $\rightarrow \tau \tau b$

- 90% branching ratio
- difficult to trigger
- don't know which pair
- lots of background

- trigger exists
- can reconstruct mass
- low background (Zb)
- 8% branching ratio
- Can use full mass reconstruction technique
 - Improve S/B
 - Details later in the 2τ +2jet stop search

Search for RPV Stop

- If exists, stop should be pair-produced at the Tevatron
- **R-parity:** $R_p = (-1)^{3B+L+2S}$
- If R-parity is violated, stop can decay into tau and a b-jet
 - for wide range of parameters $Br(\tilde{t} \rightarrow \tau b) = 1$
- Signature to look for: $(e \text{ or } \mu) + \tau_h + 2 \text{ jets}$

- Identical to the scalar LQ₃ in the limit of high gluino mass.
- Same signature (dataset, cuts) as for SUSY Hbb
- Existing Limits:
 - LQ₃: m>99 GeV (LEP / CDF Run I)
 - RPV stop: m>122 GeV (CDF Run I)

Stop Search: Control Regions

- **Tau ID: Z**→ττ
- $\left| \vec{p}_T^l + \vec{E}_T \right| > 25 \ GeV$

Hadronic tau number of tracks

Number of events

- $\begin{array}{c} p\bar{p} \rightarrow \tilde{t}, \bar{\tilde{t}}, \rightarrow (b\tau)(b\tau) \\ \hline Control Region Z \rightarrow \tau\tau \\ \mu + \tau Channel : \rightarrow Data \\ \hline Z \rightarrow \tau\tau \\ \hline N_{jet} < 2 \end{array}$
- Agreement in Njet=0, 1 bins
 - N_{jet} ≥ 2 was looked at later

Stop Search: In-the-Box

- No excess set a limit
- Result: world best mass limit: m>129 GeV
- Byproduct: world best limit on 3rd gen. scalar LQ: m>129 GeV

Mass Reconstruction with Taus

- Challenging because of escaping neutrinos, but possible:

 - Potentially helpful to fight backgrounds
 - e.g. require $M(\ell, \nu_{\tau} + \nu_{\ell}, jet) \sim M(\tau_h, \nu_{\tau}, jet)$
 - Even more useful in Hb, Hbb
 - Setback: some events are not "reconstructable"
 - <u>Reconstructable fraction ~ 80%</u>

Mass Reconstruction with Taus

Search for H⁺⁺

Natural expansion of Higgs sector

- Frequent in models with additional gauge groups
 - e.g. Little Higgs, SUSY LR-models
- Left-right symmetric models:
 - $SU(2)_L \times SU(2)_R \times U(1)_{B-L} \times SU(3)_C$
 - See-saw mechanism for light ν masses
 - $v_R \sim 10^{10} \text{ GeV}, m(H^{\pm\pm}) \sim 100 \text{ GeV}$
- At Tevatron, DY-like production:
 - σ(**m** = 100 GeV) = 0.12 pb
- Expect H++ to decay into leptons
 - WW decay constrained by ρ parameter
 - LFV is possible
 - σ=0.12 pb at mH=100 GeV

Search for H++

- Require 2 leptons (e or μ) with p_T>20 GeV
 - High acceptance
 - Still very clean signature
- Test in various control regions
- Open the box:
 - No events
 - Hence set a limit
- CDF exceeded LEP-2 sensitivity
 - Results in e/μ channels published
- Analysis with taus
 - More complicated due to ~x10 higher backgrounds
 - Start with LFV H++ (best sensitivity)
 - Results soon

First CDF Tri-Leptons: Low tan β

Chargino-neutralino in eeℓ channel

SELECTION:

- -2 <u>electrons</u>+ ℓ (ℓ =e, μ) | η | < 1
- large E_T^{Miss}>15 GeV/c²
- 15<M_{II}<76, >106 GeV/c²
- |∆φ|< 160
- Njets(20 GeV) <2

Process	
mSugra eeℓ	0.5
Bkgnd Expected	0.16±0.07
OBSERVED	0

- In progress:
 - Add forward electrons
 - Add muon channels
- Next steps:
 - Need to add taus!

CP-violation in Higgs Sector

- Add CP-violation in Higgs sector
 - Need a few more particles:
 - CP-even h, CP-odd h, one more neutralino
 - Much less fine tuning than in MSSM
 - Could well be that $h \rightarrow aa$ is dominant
 - If 2m(τ)<m(a)<2m(b), 4-tau mode</p>
- Interesting signature: two pairs of close
 or even overlapping taus
 - E.g. a good muon sitting inside a good tau can lead to a very clean experimental signature
- On our to-do list

Summary and Outlook

- The Higgs boson is being hunted at the Tevatron
 - D0 and CDF are competing, will soon start combining results
 - No smoking gun with analyzed data, but already 2-3 times more on tape
- Taus are getting into the game
 - Important for Higgs and SUSY
 - Several searches are mature, a few more in the pipeline
 - May well turn out to be very useful both for SM-like and SUSY Higgs
- SM Higgs Search:
 - On track to supersede the LEP2 lower limit on M_H in 2007
 - By the end of 2009, may see a MH=115 GeV Higgs at 5σ, or exclude up to 180 GeV.
 - Require both luck and the Tevatron delivering according to the design plan!

Run 1 combined limits - CDF

CDF PRELIMINARY Run 1

Slight fluctuation up in *l*vbb channel led to higher limit...

Still very far from SM cross section

Pole in cross section (related to b structure function) in case where one b goes forward.

o(bbb) / o(bbbb) = 10 !

Similar enhancement predicted for Z+b !

σ(Zb)•B(Z→ℓℓ) = 0.9 pb

Search for $H^{++} \rightarrow \tau \tau / e \tau / \mu \tau$

- Dominant mechanism: pair production
 - H++'s are produced with high PT
- Start with LFV $H^{++} \rightarrow e\tau$ case:
 - 3p channel: e+tau+LTC
 - 4p channel: e+tau+LTC+LTC
- For M_H=100 GeV (LEP limit)
 - Expect 3-4 signal events in existing data virtually no backgrounds
 - Sufficient for initial observation or exclusion
- Similar sensitivity in the muon channel
- Results in a few weeks

LTC = Loose Tau Candidate – narrow isolated jet Selects both electrons and hadronic taus

Z $\rightarrow \tau \tau$: Kinematics

