Inclusive and heavy quark jet cross sections from CDF

Sofia Vallecorsa

University of Geneva On behalf of the CDF collaboration

Outline

- Motivation
- The Tevatron and CDF
- Jet recostruction
- Inclusive jet cross section
- High p_t b-jet inclusive cross section
- bb jet cross section
- Summary

Sofia Vallecorsa

Motivation

- Precise test to pQCD
 - Higher center of mass energy -> increase cross section @ high Et x2 @ 400GeV, x5 @ 600GeV
 - -> Probe higher energies
- Recent theory advancements:
 - New PDF
 - New structure functions
 - Better understanding of underlying event
- Test Kt performances at a hadron collider
 - Comparison to cone-based algorithms

Sofia Vallecorsa

Motivation (II)

- σ(bb) ~ 50 μb @ 1.96 TeV
 - -> Espected event rate of few kHz

Study mechanisms of beauty production

Recent theory advancements Full NLO calculations available in MC

Sofia Vallecorsa

The Tevatron

- $p\overline{p}$ collider @ $\sqrt{s} \approx 1.96$ TeV
- Peak lum 1.2 10³² cm⁻² s⁻¹
- 1 fb⁻¹ delivered to experiments
- Analyses ~ 60-400 pb⁻¹

July 4th- 9th

Kt algorithm

Separate jets according to relative transverse momentum

 $d_{ij} = \min(P^{2}_{T,i}, P^{2}_{T,j}) \frac{\Delta R}{D^{2}}$ $d_{i} = (P_{T,i})^{2}$

D ~ jet size

Infrared, collinear safe

- JetClu (RunI)

Difficult to implement at hadron level, compare with theory

- MidPoint (new RunII) Infrared safe and well defined

- Merging pairs of particles

- **Kt** (recently used @ CDF)

Only towers with $E_{T} > 0.5$ GeV are shown

QCD '05 - Montpellier July 4th- 9th

Sofia Vallecorsa

Inclusive jet cross section

1.2

0.9[[]0

100

C_{HAD}

- Inclusive calorimetric trigger
 L3 E_t × (5,20,50,70,100)
- Kt jets D=0.5, 0.7, 1.0
- 0.1< |Y|<0.7, P_t>54GeV/c
- Jet energy scale correction and unfolding to hadron level

NLO JETRAD prediction:

 Parton-to-hadron correction to allow direct comparison data/MC (UE and hadronization)

Correction increases with D -> higher contribution of UE

300

400

05

200

K_T D=0.5 0.1<|Y|<0.7

CDF Run II Preliminary

500

600

P_T^JET [GeV/c]

700

Sofia Vallecorsa

Inclusive jet cross section

Inclusive jet cross section

High p_{t} b jet cross section

High p_{t} b-jet cross section

- Main sources of systematics:
 - Absolute energy scale
 - B-tagging

Systematic Error	low P_T	high P_T
Luminosity	6%	6%
Absolute Energy Scale	15-20%	40%
Jet energy resolution	6%	6%
B-tagging efficiency	10%	15%
B-tagged jets fraction	10-15%	40%
Unfolding	8%	8%

Data/Pythia tune A ~ 1.4 As expected from preliminary NLO/LO comparison

bb cross section

CDF Run II Preliminary

Summary

- New RunII measurements reported:
 - Inclusive jet cross section, Kt algorithm: good agreement with NLO Monte Carlo, work is in progress to extend measurement in the forward region

(coming up next MidPoint measurement)

- New inclusive b jet cross section considerably increases range in p_t (RunI D0 measurement < 100 GeV): expected L0 ratio (Data/Pythia ~1.4) and NLO comparison in preparation
- bb jet cross section and angular correlations: extend analysis to more data but already a reasonable agreement with LO and NLO Monte Carlo

Sofia Vallecorsa