Searches for New Physics at Colliders

Giorgio Chiarelli, INFN Pisa

Why ?

Why should we search for *New Physics*? > There are several *theory-oriented* answers \Rightarrow Problems in the Standard Model \rightarrow From the hyerarchy problems to FCNC to CP violation \rightarrow The Higgs sector becomes unstable at high energy →Why three generations? And masses..? \rightarrow \succ Also some hints of open questions: ⇒Cold Dark Matter ⇒Neutrino masses \Rightarrow Unification of coupling constants at Mp scale? \Rightarrow How to marry gravity with QT? Overall in the following I will restrict to the view that at "very large energy" something must happen ⇒It is lot of fun to check whether this has an impact on today phenomenology

Where?

The energy frontier is an optimal place to look for new physics

➢ Present:

⇒HERA (DESY, Hamburg)

→A collider where electron and proton collide with beam energies of 27.6 and 920 GeV, i.e. sqrt(s)=320 GeV

→Hera2: since 1/2005 e-p with polarized leptons

⇒Tevatron (Chicago)

→Pbar-p collider at cms energy of 1.8 TeV from 1985 through 1996 now running at 1.96 TeV

➤ Future

⇔LHC

→p-p collider starting operations in 2007 at CERN \Rightarrow 1 C?

➤ I will concentrate on results from present machines ⇒Results since Summer 04

> For description of experiments and machines see talks by Robin, Pierre, Zhiquing, Don, Juan..

What is New Physics?

By dubbing *New Physics* anything which is not Standard Model we already set the way to look for it from an experimental point of view

- Select observables which might be affected by the existence of new physics
 - ⇒Compare Standard Model expectations with data

→It takes a lot of ingenuity

- Therefore we will be talking of familiar physics objects:
 charged leptons
 missing energy due to m escaping
 - detection

⇒jets

Different scenarios sometimes share the same final state topology

Problems...

The Higgs sector (being a scalar) brings (technical) problems in the theory. Its mass gets large corrections

each fermion and a spin ½ particle for each spin 0,1

PIC 05, Prague July 2005

Supersymmetric "shadow" particles

Some implications

m,[GeV]

MSSM Higgs

Chargino/neutralino searches

Charginos and neutralinos decay through different channels depending upon the available phase space

➢ Final state with three leptons
⇒Golden channel

- →Low background
- →Easy triggering

⇒However

- →Low efficiency
 - Large charged lepton coverage helps (D0)
 - Adding taus to e and mhelps

Limits

DO adds taus and observes

	eel	μμΙ	μμ	eμl	μτΙ	eτl	total
Bckg. Expect.	0.21±0.12	1.75±0.5 7	0.66±0.37	0.31±0.13	0.36 ±0.13	0.58 ±0.14	3.85 ±0.75
Obs.	0	2	1	0	1	0	4

SM expectations, limits are set within the mSUGRA model:

 $M_{\chi\pm}$ >117 GeV/c² at 95%CL

Under the assumption of slepton degenerate masses and Mslepton>M $\chi^0{}_2$

Giorgio Chiarelli, INFN Pisa

Chargino-Neutralino

R

Combined limit

As events are consistent with background ⇒Both experiments set limits within the GMSB

	Bkgnd Expect	Obs	Limit m _{y+} (GeV/c ²)	Limit m _{χ°} (GeV /c²)
DO	3.7±0.6	2	195	108
CDF	0.27±0.07±0. 1	0	167	93

Giorgio Chiarelli, INFN Pisa

Gluinos and Squarks

Decays of q, g at the Tevatron, produce
➤ Multijet events with missing energy
➤ For the case of third generation q (b, t), specific final states can be favoured
Therefore CDF and D0 search for
➤ Large Missing E_T
➤ Multijet events

⇒I dentification of one or more jet as containing debris from the fragmentation of b-quarks can be useful

Jets+MET (gluino/squarks)

3 different samples are designed to investigate different regions of the $m_{\widetilde{q}}\text{-}m_{\widetilde{q}}$ plane

 \geq 2 jets (E_T >50 GeV), E_T>175 GeV

Iow m_o, m_o>m_q, production dominated by qq

- ≥3 jets (E¹_T>25 GeV), F_T>100 GeV ⇒Intermediate case, optimized to cover

Giorgio Chiarelli, INFN Pisa

Indirectly seeking Susy

Supersymmetric corrections to SM processes can be relevant

By precision measurement one can check prediction and/or find if SUSY exists...

important check is

- ➢ B rare decays

 (B_s→µµ, B_d→µµ)
 ⇒B_{s,d} decays to µµ via loop
 →Nano-BF: B_s→µµ
 ⇒SUSY enhances the BF
 →Good
 ⇒Decays are rare but B_s are copiously produced at the
 - Tevatron (and B_d at both Tevatron and factories)

RPV SUSY

Squarks in RPV SUSY

Giorgio Chiarelli, INFN Pisa

ZEUS

Sneutrinos in RPV Susy

d

No excess set

V.-

www

A132

μ

CDF searched for sneutrino production in e-µ events ≻P_T lepton>20 GeV/c ≻After selection main background from Z

Living on a brane..

In recent years a new paradigm for the Physics BSM:

- Extra Dimensions are not small!
 - ⇒We are ants on a surface
 - ⇒Particles replaced by strings
- > A whole new
 - phenomenology
 - →Good!
 - ⇒A lot of new particles
 - →Very good! ⇒No satisfactory
 - description of current situation yet

Replacement of particles with strings seems promising to quantize gravity

- Has an important consequence:
 - ⇒Gravitation in our world is a remnant of a stronger interaction which propagates in extra (compactified) dimensions
- Current limits from gravitational experiments leave room for a rich spectrum of searches

Different options

Arkani-Hamed, Dimopolous, Dvali (ADD):

- Several extra dimensions
 Gravity freely propagates in the (n>2) ED, compactified
 - ⇒M²_{PL}~RⁿM_sⁿ⁺², Ms: string scale

```
Dienes, Dudas, Gherghetta
(DDG)
```

≻ TeV⁻¹ ED

⇒n≥1, Mc is the compatification scale

Randall-Sundrum (RS)

- One highly curved ED
 - ⇒Gravity is localized in the ED
 - ⇒Scale of physical phenomena on the TeVbrane is specified by an exponential warp factor:

$$\Rightarrow \Lambda_{\pi} = M_{\mathsf{Pl}} e^{-\mathsf{k}\mathsf{R}\mathsf{c}\pi}$$

 $\Rightarrow \Lambda_{\pi} \sim \text{TeV if } kR_c \sim 11-12.$ Where Rc is the compactification radius and k is the curvature scale

Extra Dimensions

Phenomenology at Tevatron collider:

Direct production of graviton/Kaluza Klein excitations (a whole tower of particles...)

Indirect effect (i.e. modification of spectra/cross section)

 $an G_{n}$

- CDF and DO searched for modification of ee,µµ,γγ production ⇒Interpreted in both LED and RS models
- D0 also searched for effects of TeV⁻¹ ED in its ee data
- Searches for excess of missing energy in jet events could be interpreted within the ED framework
 - ⇒CDF performed a search in 70 pb-1 which has not been updated to the current dataset

g,q

Q,C

LED with dileptons and yy

Search for enhanced dilepton production:

Gravity effects parametrized by η_G :

DØ Search Strategy:

- > Fit distribution of M vs $\cos\theta^*$
 - of Data SM
- Extract ?_G from the fit
- Translate ?_G into M_s limit
 - $\gg \eta_G = F/M_s^4$
 - F model dependent parameter ~1: ⇒GRW: 1
 - ⇒HLZ:F = $log(M_s^2/M^2)$, n=2 F = 2/(n-2), n > 2
 - \Rightarrow Hewett F= 2 ?/p, ? = ±1
 - $\Rightarrow M_s \text{ is the UV cutoff} = M_{PL(4+n \text{ dim})}$

Giorgio Chiarelli, INFN Pisa

PIC 05, Prague July 2005

PIC 05, Prague July 2005

In absence of a signal

You can interpret the absence of a signal as an upper limit on new physics in different scenarios > Sequential neutral gauge boson (Spin 1) > RS graviton (spin 2) > Light Higgs scenario > Technicolor _{σxBR} (X→ee,μμ)

Giorgio Chiarelli, INFN Pisa

Leptoquarks

The fermionic sector of the SM can be symmetrized by the introduction of LQ

- ⇒ Predicted in many models
- ⇒ Couple to both quarks and leptons, carry SU(3)c, B and L numbers, fractional electric charge, F=3B+L conserved

⇒ Relevant parameters:
 ⇒ Couplings λ_{ij} and
 ⇒ Decays, ordered according to BF(LQ→Iq)

LQ have been searched at colliders (LEP, Tevatron, HERA) for both indirect effect and direct production

- ep colliders are a natural place for direct production of 1st generation LQ
- Pair-produced at the Tevatron where all generations are available:

Giorgio Chiarelli, INFN Pisa

Tevatron searches

D0 and CDF searched for LQ of 1st, 2nd, 3rd $>1^{st}$ generation $\rightarrow e+jet$ or v+jet ($\beta=0$) $\geq 2^{nd}$ generation $\rightarrow \mu$ +jet or v+jet > 3rd generation $\rightarrow \tau$ +jet or v+jet \succ For 1st and 2nd generation also e+jet+v+jet case (intermediate case, β between 0 and 1) ⇒Search generation specific and generation blind \Rightarrow The actual measurement can be one of the following: \Rightarrow σxβ² (two charged leptons and two jets) σx2βx(1-β) (one charged I, 2 jets, neutrino) σx(1-β)² (two neutrinos, two jets in final state) ⇒Independent from couplings

Other possibilities

There are scenarios which include the existence of

```
⇔LFV
```

⇒Additional charged bosons (W')

- ⇒compositness
- ⇒excited leptons

```
⇒...
```


W'

A possibility in (for example) \Rightarrow Left-Right Symmetric Model: $SU(2)_{L}xSU(2)_{R}xU(1)_{Y}$ \Rightarrow High P_T e+MET \Rightarrow Compare M_T distribution

Highest M_T events at 524 GeV/*c*² ⇒No excess over background

	Events in Each M_T Bins (GeV/ c^2)					
	200 - 250	250 - 350	350 - 500	500 - 700	700 - 1000	
$W \to e \nu$	35.8 ± 4.3	19.5 ± 2.5	4.34 ± 0.99	1.08 ± 0.73	0.0 ± 0.0	
Jets	2.6 ± 6.3	0.0 ± 3.4	0.0 ± 0.31	0.0 ± 0.0	0.0 ± 0.0	
Other Backgrounds	5.0 ± 0.7	3.2 ± 1.2	2.76 ± 3.26	0.12 ± 0.04	0.04 ± 0.02	
Total Background	43.3 ± 7.6	22.7 ± 4.5	7.10 ± 3.66	1.20 ± 0.77	0.04 ± 0.02	
Data	41	21	9	1	0	

Giorgio Chiarelli, INFN Pisa

Compositness

Conclusion

The Standard Model has been very successful ➤ still missing piece (Higgs particle) ⇒and possibilities of inconsistencies ahead of us Hints of open questions Models for new physics still looking for experimental evidence Challenging task...no unique path yet We are working at the energy frontier and a very exciting period ahead of us in experimental physics

➤ Tevatron/HERA will lead the path to the LHC
⇒Almost an order of magnitude in energy available
→New regime?