

B and b-baryons

OUTLINE

Tevatron and the CDF and D0 detectors

- B
 - Mass
 - Lifetime
- **>** Bs mixing $(\Delta \Gamma_s, \Delta m_s)$
- Branching fractions Rare decays
- $\bullet B_c$
 - Mass
 - Lifetime
 - Branching fractions

- b-baryons
 - Spectroscopy
 - Lifetime
 - Branching fractions
- Conclusion

Prague, July 2005

The Fermilab Accelerator Complex

FERMILAB'S ACCELERATOR CHAIN

Tevatron Performance

Tevatron (Run I 1992-96, JL dt = 110 pb-1):

p → ← pbar at √s = 1.8 TeV, 3.5 µs between collisions
Tevatron (Run II 2002-Present, ∫L dt = ~1.02 fb-1):
p → ← pbar at √s = 1.96 TeV, 396 ns between collisions

The CDF and D0 Detectors

- Excellent mass resolution
- Particle ID: dE/dx, TOF
- Tracking triggers (Hadronic B's):
 - L1: Tracks

✤ D0:

- Excellent muon and tracking coverage
 - Tracking up to $|\eta| < 3$
 - Muons up to $|\eta| < 2$

Vaia Papadimitriou

Data sets

CDF/D0 use data collected in the period 2002-2004

- up to ~ 490 pb⁻¹ used for B physics
- up to ~ 360 pb⁻¹ used for B physics
- Lost ~ 100 pb⁻¹ due to Central Tracking Chamber ageing problem

Now completely resolved

B-Physics cross sections and triggers

b Production cross section:

|y| < 1 CDF, PRD 71, 032001, (2005)

 $\sigma(p\overline{p} \to \overline{b}X) = (29.4 \pm 0.6_{(stat)} \pm 6.2_{(sys)}) \mu b$

Inelastic cross section: $\approx 60 \text{ mb} \rightarrow \text{factor } 1/1000 \text{ trigger.}$

Compare with *b*-factories: σ is 10³ higher.

L is 1 fb $^{-1}$ (TeVatron) vs. a few hundred fb $^{-1}$ (*Y*(4S))

	σ (μb)	$\mathcal{L} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$	Integrated L	<i>b</i> -events
Tevatron	29	1.27 ×10 ³²	$1 \text{ fb}^{-1} \times 2$	29 ×10 ⁹
KEKB	0.001	1.58×10 ³⁴	470 fb ⁻¹	0.47×10^{9}
PEP-II	0.001	0.92×10 ³⁴	273 fb ⁻¹	0.27 ×10 ⁹

Trigger crucial point:

- 2μ (e) from J/ ψ CDF, D0
- soft lepton, (soft lepton+non prompt track) CDF, D0
- 2 non-prompt tracks CDF, D0 under commissioning

Vaia Papadimitriou

Prague, July 2005

Vaia Papadimitriou

9

B hadron lifetimes

- B hadron lifetimes provide understanding of detector, trigger, analysis biases
- B hadron decays dominated by bquark decay
 - Effect of spectator quarks can be included with perturbative expansions in terms of 1/m_b (HQET)
 - Expect small differences between lifetimes of different species
 - Non-perturbative ME from lattice, Wilson coeff. from perturbative QCD
 - NLO improves agreement
 - Ratios reduce theory uncertainties

C. Tarantino, hep-ph/0310241 October 2003

Prague, July 2005

Lifetimes with $B \rightarrow lvDX$ modes

Highest statistics samples

- Difficult systematics:
 - Sample composition for B⁺, B⁰
 - Cross talk from D**, D*
 - Backgrounds:
 - Combinatorial
 - Physical: $B \rightarrow D^{(*)}D^{(*)}$
 - Prompt: c-cbar, b-bbar, D+fake
- Recent result from CDF with low statistics lepton pt > 8 GeV sample
 τ(B⁺) = 1.653±0.029±0.032 ps, τ(B⁰) = 1.473±0.036±0.054 ps τ(B⁺)/τ(B0) = 1.123±0.040±0.040
- Very high statistics secondary vertex triggered sample still under study

B° $\pi^0_{\cdot}\gamma$ π^0 D π^0 π^+ π^0 Đ $\bar{\mathbf{D}}$ π^{0}, γ B **CDF Run II Preliminary** 260 pb⁻¹ Combined lepton-D⁰ fit prob. = 0.754 10³ – All R Candidates per 25 µm R⁰ Backgrounds 10 10 13,300 Signal events 10 0.2 -0.1 0.1 0.3 Pseudo-proper Decay Length (cm)

Lifetimes with $B_s \rightarrow lvD_s X$ modes

First high statistics B_s lifetime measurement from D0

- ≻ Use $D_s^- \rightarrow \phi \pi^-$ decay
 - Difficult background systematics:
 - Combinatorial
 - Physical: $B \rightarrow D^{(*)}D^{(*)}$
 - Prompt: c-cbar, b-bbar, D+fake

Currently best measurement

$\tau(Bs) = 1.420 \pm 0.043 \pm 0.057 \text{ ps}$

	(mm)	Source	$\Delta c \tau$ (μm)
		Detector alignment [8]	± 5.0
ICS		Background estimate	± 15.0
ati	ury	Selection criteria	+3.6
с Ш	ma	Decay length resolution	± 1.6
ste	m	K-factor determination	+3.5
Sy	Su	Non-combinatorial background	+3.6
• 4	• 1	Total	± 17.0
Pragu	ie, Ju		

Lifetime with hadronic decays

CDF:

- First measurement with Secondary Vertex Trigger biased samples
- Trigger/analysis ct-efficiency curves from "realistic" MC
- ◆ Check by emulating trigger cuts on B⁺→ J/ψ K⁺
- Use several final states
 - → B[±]: D⁰π[±] [8380 ev.] (D⁰→Kπ)
 - ► B⁰: D[±]π[∓] [7957 ev.] (D[±]→Kππ) D[±] 3π [4173 ev.] (D[±]→Kππ)
 - ► Bs: Ds π^{\pm} [472 ev.] (Ds $\rightarrow \phi \pi$) Ds 3π [133 ev.] (Ds $\rightarrow \phi \pi$)
 - Important for Am, measurement

Prague, July 2005

Lifetimes with hadronic decays

More statistical power than J/ψ modes

Slightly larger systematics

■ Efficiency curve ■ backgrounds $\tau(B^+) = 1.66 \pm 0.03 \pm 0.01 \text{ ps}$ $\tau(B^0) = 1.51 \pm 0.02 \pm 0.01 \text{ ps}$ $\tau(B_s) = 1.60 \pm 0.10 \pm 0.02 \text{ ps}$

CDFII Preliminary L=360pb⁻¹ hin Data 120 Me 100 100 Global fit N of B_s : 472 ± 27 Signal Cabibbo Combinatorial $B \rightarrow D^* \pi$ $B \rightarrow DX$ B continuum 60 $B_{e} \rightarrow D_{e} \pi$ $D_{e} \rightarrow \phi \pi$ 40 ¢→kk 20 D 4.8 5 5.2 5.4 5.6 5.8 4.8 5.6 5.8 Mass [GeV/c²] CDFII Preliminary L=360pb 50 µm per bin 50 µm per bin Data $B_s \rightarrow D_s \pi$ Global fit $\boldsymbol{\mathsf{D}}_{\boldsymbol{\mathsf{S}}}\!\!\rightarrow\!\boldsymbol{\boldsymbol{\varphi}}\,\boldsymbol{\pi}$ Combinatorial φ→**KK** Signal 10 N of B_{s} : 472 \pm 27

Lifetimes

Several new results included in HFAG 2005 averages

- \geq B⁰, B⁺ dominated by BaBar/Belle
- > B_s: dominated by CDF/D0, LEP

hep-ex/0505100, May 2005

Lum.	CDF y modes	CDF hadronic		CDF semi- leptonic (Hi pt)	D0 semi- leptonic (Ψ)	HFAG
pb-1	240	360		260	400	2005
B0	1.539±0.051±0.008	1.511±0.023	±0.013	1.473±0.036±0.054		1.528 ± 0.009
B+	1.662±0.033±0.008	1.661±0.027:	±0.013	1.653±0.029±0.032		1.643 ± 0.010
B+/B0	1.08±0.042			1.123±0.040±0.040	1.08±0.016±0.014	1.076 ± 0.008
Bs	1.369±0.100±0.009	1.598±0.097:	±0.017		1.420±0.043±0.057	1.479 ± 0.044
Bs/B0 0.890±0.072 0.968 ± Red = Very recent! 0.968 ±					0.968 ± 0.029	
Theory (*) (NLO) 1.00±0.01 1.06±0			.01 1.06±0.02			
Prague, July	ague, July 2005 (*) Gabbiani et al., hep-ph/0407004 Oct.2004 adimitriou				adimitriou	

Prague, July the measurements of BaBar and Belle

Real Axis

B mixing Basic ingredients for the measurement: > High statistics samples of neutral B's in flavor specific decays **B** lifetime **CDF:** J/ ψ K, D π , l ν DX $\Delta m_{d} = 0.5 \text{ ps}^{-1}$ D0: J/ψK, lvDX $\Delta m_{s} = 14 \text{ ps}^{-1}$ Mixing Asym. Proper decay length reconstruction Fully reconstructed modes provide better accuracy Tagging of flavor at production (flavor tagging) Key problem at the Tevatron! Equivalent statistical power: N εD² **Proper decay time t** • $\varepsilon = tagger efficiency$ • D = tagger dilution = $2*\eta$ -1 (η = probability of correct tag) • Measure: $A(t) = (N_{nm}-N_m)/N = D \cos(\Delta m t)$

 $> N_{nm}(N_m)$: number of B's with same (different) flavor at production and decay

Mixing measurement calibrates dilution

Impossible for B_s until oscillation observed

Prague, July 2005

21

CDF: Bs mixing (signals)

✤ Hadronic analysis: Bs→Dsπ

- ➤ ~ 900 events
- Cross-check with hadronic lifetime analysis

✤ Semi-leptonic analysis: Bs→Dslv

- ~ 7.5k events
- Cross-check with parallel independent analysis

Channel	Yield	S/B
Bs \rightarrow Ds π (Ds \rightarrow $\phi\pi$)	526±33	1.80
Bs→Dsπ (Ds→K*K)	254±21	1.69
Bs \rightarrow Ds π (Ds \rightarrow 3 π)	116±18	1.01
Bs→Dslv (Ds→φπ)	4355±94	3.12
Bs→Dslv (Ds→K*K)	1750±83	0.42
Bs \rightarrow Dslv (Ds \rightarrow 3 π)	1573±88	0.32
ague. Inly 2005		

Mixing Status and Prospects

Mixing Status and Prospects

$B_s \rightarrow \psi(2S)\phi$

Run II, 355 pb⁻¹

 $B \longrightarrow h^+h^-$

- Exploit the two-track trigger sample.
- Combine mass, kinematics and PID in an unbinned maximum likelihood fit to extract the fraction of each of the expected components.
- P_T(track) > 2 GeV/c; K/π separation of 1.4σ.
 1.4σ → 1.6σ by including

TOF information.

Prague, July 2005

Signal: 18.5 ± 5.5 (3.4o)

g

485 pb⁻¹

$B_{s(d)} \rightarrow \mu\mu$

Sensitive probe of New Physics

2HDM - penguin

B_s→μμ

Run II, 240 pb⁻¹

$B_{s(d)} \rightarrow \mu \mu$

Run II, 364 pb⁻¹

CDF $Bs(d) \rightarrow \mu + \mu$ - : Used blind analysis technique

 $B^{\pm} \rightarrow J / \psi K^{\pm}$: used as a control sample and for normalization

- Used 3 primary discriminating variables
 - λ : $cL_{3D} \cdot M_{\mu\mu} / p(B) \lambda / \sigma(\lambda) > 2$
 - $\Delta \alpha$: $|\alpha_{\rm B} \alpha_{\rm vtx}| < 0.7$ rad
 - Isolation: $p_{TB}/(\Sigma trk + p_{TB}) > 0.5$ Mass $M_{\mu\mu}$: choose $\pm 2.5\sigma$ window: $\sigma = 24 \text{ MeV/c}^2$
- Optimization
 - Used simulated signal and data sidebands
 - Background estimates were checked in same sign lepton and -ct samples

Prague, July 2005

$B_{s(d)} \rightarrow \mu \mu$: Physics Reach

mSUGRA

Prague, July 2005

SUSY SO(10) Unification

- Allows for massive neutrino
- Relic density of cold dark matter

Prague, July 2005

Vaia Papadimitriou

41

$B_c^{\pm} \rightarrow J/\Psi I^{\pm} v$

Run I, 110 pb⁻¹

After box was open: scan search region with binned likelihood fit: mass fixed (scanned), resolution constrained, S, B fit parameters

$B_c^{\pm} \rightarrow J/\Psi \pi^{\pm}$

New CDF analysis

➢ Blind search, control sample 2378±57 $B_{µ}^{±} → J/ψK^{±}$

 $B_c^{\pm} \rightarrow J/\Psi e^{\pm}v$

CDF Run 2 Preliminary: ~360 pb⁻¹

Background :

63.6±4.9(stat.)±13.6(syst.)

Observe :

178.5±14.7(stat.)

Excess:

114.9±15.5(stat.) ±13.6(syst.)

Significance : 5.90

 $\frac{\sigma(B_c^+) \times BR(B_c^+ \rightarrow J/\psi e^+ v)}{\sigma(B^+) \times BR(B^+ \rightarrow J/\psi K^+)}$

Cross section ratio is defined within the kinematical limits
p_T(B) > 4.0GeV , |y(B)| < 1.0

 $\sigma_{ratio} = 0.282 \pm 0.038(stat.) \pm 0.074(syst.)$

b - **Baryons**

Prague, July 2005

Vaia Papadimitriou

49

$\Lambda_{\rm b}$ mass

Branching Ratios

Signal Sample: $\Lambda_b \to p^+\pi^-$ and $\Lambda_b \to p^+K^-$

- Predictions for BR are in the range 1 x 10⁻⁶ 2 x 10⁻⁶
- Large direct CP violation expected (Z. Phys. C56 (1992) 129)
- Exploit the two-track trigger sample
- Use $B^0 \rightarrow K\pi$ for normalization
- Backgrounds are combinatorial and from the tail of B — hh
- BR(Λ_b→ph) < 2.3 x 10⁻⁵ @ 90% C.L. h = K, π

$$f_{\Lambda}/f_{d} = 0.25 \pm 0.04$$

54

Expected Integrated Luminosity

Integrated Luminosity (fb⁻¹)

Conclusions

- The Tevatron is running very well
- Many new results
- The Tevatron is expected to provide 4.1 8.2 fb⁻¹ by October 2009
- A lot of answers and surprises awaiting!!

Prague, July 2005

Tevatron Performance

Tevatron Performance

Prague, July 2005

Vaia Papadimitriou

60

Expected Weekly Luminosity

Parameters: Design Curve

							•
Phase	2	2	3	4_5	6		
Parameter	FY05 Last 10	Slip Stacking	Recycler Ecool + Şta6stgilalank move	Stacktail +Helix	Reliability (Units	merge
Initial Luminosity	98	96	219	284	284	$x10^{30} \text{em}^{-2} \text{scc}^{-1}$	
Integrated Luminosity per week	19	17	38	50	50	pb^{-1}	
Average Store Hours per Week	128	100	100	100	100	Hours	e-cool
Store Length	21.6	20	20	15	15	Hours	
Number of Protons per bunch	240	260	260	270	270	x10 ⁹	
Number of Pbars per bunch	37	42	99	131	131	x10 ⁹	
Zero Stack Stacking Rate	14	24	30	46	46	x10 ¹⁰ /hour	
Average Stacking Rate	8	10	22	39	39	x10 ¹⁰ /hour	
Stack Size transferred	200	201	447	589	589	x10 ¹⁰	
Pbar Production	16	17	21	32	32	x10 ⁻⁶	
Protons on Target	6.1	8	8	8	8	x10 ¹²	
Pbar cycle time	2	2	2	2	2	Secs.	
Pbar up time fraction	0.74	0.75	1	1	1		
A->R Transfer interval			2.5	0.5	0.5	Hours	
A->R Transfer efficiency			90	98	98	%	
A->R Transfer Time			0.2	0.05	0.05	Hours	

Prague, July 2005

Vaia Papadimitriou

62

Luminosity Projections

Our plan is to deliver the Design Projection Also, develop an understanding of fallback scenarios

In v3, mixed-source operation and the phased stacktail upgrade allow more natural introduction of key upgrades (e-cooling and Stacktail upgrades) and provide a more robust fall-back position

Three Curves

- Design Projection: electron cooling and Stacktail upgrade
- Black Projection: no electron cooling, mixed-source operation beyond 05 (20% gain), Deb→Acc acceptance issues solved
- Blue Projection: no electron cooling, Deb-Acc acceptance only minor improvements and no gain from mixed-source

All assume slip stacking and 100 HEP hrs per week average long-term

Prague, July 2005

The CDF Detector

B-Physics Data samples Di-Muon Mass CDF Preliminary: ~360pb¹ • J/ψ samples: z J/w: 2.7M 10 ▶ Millions! ~ 20% are from B's σ (J/ ψ) = 14 MeV Reconstruct exclusive tψ(2S): 100K 10 $B/\Lambda_B \rightarrow J/\psi K/\Lambda^0$ modes 10⁴ Semi-leptonic $B \rightarrow D \ln X$ samples: 10³ \succ ~ 100 K events with fully reconstructed D 10² 2 D0 has larger muon acceptance Di-Muon Mass(GeV) CDF lowers lepton trigger pt by requiring additional displaced track Fully hadronic decays (CDF only) ➤ ~ 10 K events fully reconstructed B's Requires trigger on secondary vertex (SVT)

65

Triggers:

JPsi

Rare B BBbar

Upsilon

Y(1S): 18K

10

Y(2S): 3.6K

AY (3S):2.0K

Triggering on displaced tracks

Level 2: Silicon Vertex Trigger

- Use silicon detector information
 - Good IP resolution
 - Trigger on displaced track
- Beamline reconstruction
 - update every ~ 30 seconds
- > IP resolution: ~ $50 \,\mu m$
 - 33μm beam size + 35μm SVT

 $35\mu m \oplus 33\mu m$ resol \oplus beam $\Rightarrow \sigma = 48\mu m$

Prague, July 2005

Lifetimes with J/ψ K modes

Cleanest channels, but statistics limited

- ► Best Tevatron results from CDF (240 pb⁻¹) $\blacksquare B^+ \rightarrow \psi K^+, B^0 \rightarrow \psi K^*, K^0_s, Bs \rightarrow \psi \phi$
- > Main background from prompt ψ + tracks
- No kinematic uncertainty
- Systematics at level of B factories
- $\begin{aligned} \tau(B^+) &= \textbf{1.662 \pm 0.033 \pm 0.008}, \ \tau(B^0) = \textbf{1.539 \pm 0.051 \pm 0.008} \\ \tau(Bs) &= \textbf{1.369 \pm 0.100 \pm 0.009} \end{aligned}$

Prague, July 2005

B_d Mixing

- HFAG Summary based on results presented in Winter 2005
- World Average dominated by BaBar/Belle

Prague, July 2005

B_d Mixing

These results obtained using many features important for Bs mixing

- Unbinned fit
- Parametrized dilutions
- Calibrate dilutions

Test amplitude scan on fully reconstructed B_d

- Fit D*A*cos(Δm t) at fixed Δm
- Expect A=1 for $\Delta m \sim \Delta m_d$
- ➢ Limit (95% CL):
 - $\square \Delta m$ such that A+1.645 $\sigma_A = 1$
- > Sensitivity: Δm such that 1.645 $\sigma_A = 1$

H. G. Moser, A. Roussarie, NIM **A384** (1997)

Prague, July 2005

Bs mixing

Tevatron experiments do not have yet sensitivity for observation of SM prediction

*****New results:

CDF:

Limit with combined fully reconstructed and semi-leptonic modes

► D0:

Limit with semi-leptonic modes

SM Fit (2004): $\Delta m_s = 18.3 \pm 1.6 \text{ ps}^{-1}$

Systematics in B_s Mixing

Semi-leptonic

Hadronic

Prague, July 2005
B_d mixing

2 recent results from CDF using 355 pb⁻¹ and OST

- Semi-leptonic sample: 124k lD⁰ (24k lD*+), 53k lD+
 - $\Delta m_d = 0.497 \pm 0.028(\text{stat.}) \pm 0.015(\text{syst.}) \text{ ps}^{-1}$
- ► Hadronic sample: $5.3k \psi K^+$, $2.2k \psi K^+$, $6.2k D^0 \pi^-$, $5.6k D^- \pi^+$ $\Delta m_d = 0.503 \pm 0.063 (\text{stat.}) \pm 0.015 (\text{syst.}) \text{ ps}^{-1}$

Prague, July 2005

74

CDF: Bs signals semi-leptonic samples

75

CDF: Bs mixing (cross-checks)

Mass and lifetime projections

Mass and lifetime consistent with World Avg. values/D0

Prague, July 2005

Vaia Papadimitriou

Future Mixing Improvements

- Include Same Side (Kaon) Tagging
 - Expect twice tagging power than OST combined
- Improve accuracy of primary vertex
- Add more channels:
 - ► Bs \rightarrow Ds 3π
 - Bs→Ds*π, Bs→Dsρ+
 - Partial reconstruction can treat as semi-leptonic case

B_{s(d)}→μμ: Physics Reach

SUSY SO(10) Unification

- Allows for massive neutrino
- Relic density of cold dark matter

R. Dermisek et al. hep-ph/0304101

Prague, July 2005

Vaia Papadimitriou

$B_c^{\pm} \rightarrow J/\Psi I^{\pm} v$

Run I, 110 pb⁻¹

Production measurement

$P_T(B) > 6 \,\text{GeV/c}; |\eta| < 0.6$

 $= 0.132^{+0.041}_{-0.037} (stat) \pm 0.031 (syst)^{+0.032}_{-0.020} (c\tau)$

PRL 81, 2432 (1998), PRD 58, 112004 (1998)

 $\sigma(B_c) \times B(B_c \rightarrow J/\psi \ell v)$

 $\sigma(B_u) \times B(B_u \rightarrow J/\psi K)$

Vaia Papadimitriou

 $B_c^{\pm} \rightarrow J/\Psi \pi^{\pm}$

• Cross check: Look for partially reconstructed B_c decays below the

peak.

- Relax cuts. Compare upper and lower sidebands. Use B[±] as reference.
 Expect to see partially reconstructed B_c decays in lower sideband.
- Use J/ψ vertex as reference; look at events where the 3rd track is common to the J/ψ vertex.

See an excess in B_c data that is similar to B^{\pm} data.

 172 ± 49 (stat) ± 15 (syst) events

Masses

Run II results ~ or better of current world averages

- > CDF has very good results due to excellent tracking resolution
- Close to being systematics dominated

B hadron	Mass (MeV/c ²)	Mass (MeV/c ²)	PDG Reference
species	CDF Run II (04-05)	PDG 2004 average	
B +	$5279.1 \pm 0.41 \pm 0.36$	5279.1 ± 0.5	CLEO2 (00), CDF(96)
B ⁰	$5279.6 \pm 0.53 \pm 0.33$	5279.3 ± 0.7	CLEO2 (00), CDF(96)
B _s	$5366.0 \pm 0.73 \pm 0.33$	5369.6 ± 2.4	CDF(96), LEP
$\Lambda_{\rm B}$	5619.7 ± 1.2 ± 1.2	5624 ± 9	CDF(97), LEP
B _c	$6287.0 \pm 4.8 \pm 1.1$	$6400 \pm 390 \pm 130$	CDF(98) - Semileptonic
		6320 ± 60	OPAL(98) - J/ψπ