

Non SUSY Searches at the Tevatron

DongHee Kim

Kyungpook National University for the CDF and D0 collaborations

Fermilab Tevatron

- Proton-Antiproton Collider with sqrt(s) = 1.96 TeV
- run the Tevatron till 2009
- World Energy Frontier before LHC

Tevatron Luminosity Profile

- Extended spatial e, µ coverage
- New plug calorimeter improves also MET measurement
- Improved MET triggers
- Added triggers to identify leptons at early stage

- New silicon and fiber tracker
- Solenoid (2 Tesla)
- Upgrade of muon system
- Upgrade of Trigger/DAQ

Run II Integrated Luminosity

Search and Signature

Search	Signature
W'	ev
Z' (sequential Z', $Z\psi$, $Z\eta$, $Z\chi$, $Z\iota$)	ee, μμ, ττ
Compositeness (excited electron)	e γ
Leptoquarks	(ll, lv, vv) + jet jet
Extra Dimension	ee, μμ, ττ , γγ, jet + MET
(LED, TeV ⁻¹ ED & WarpedED)	
Monopole	Exclusive trigger(TOF & Tracker)
Technicolor	ee, μμ, lvbb

This search is mostly only based on $\sim 200 \text{ pb}^{-1}$ data

Search for High Mass Resonances

- New particles like massive gauge bosons predicted in many extensions to the standard model
 - ✓ Spin –1, Sequential Z', Z ψ , Z η , Z χ ,Z ι from E(6) Model, Techni-mesons ρ_T , ω_T
 - ✓ Spin 2, Randull-Sundrum(RS) Graviton
 - \checkmark Spin 0, RPV Sneutrino($\widetilde{\nu}$)
- Looking for resonances decaying to leptons provides very clean signature even in a hadron collider
- For the these(ee, µµ) channel, search X directly by comparing observed and expected background invariant mass distribution
 - Experimental sensitivities for the particles are different according to the spin of X which determines the angular distribution of the decayed dileptons.
 - ✓ Obtain 95% CL upper limit of $\sigma(X_{ll})$ on $p\overline{p} \to X \to ll$ as a function of M_{ll} for the each spin value

Dilepton Channel

Dilepton(ee, µµ) Mass Distribution

- 200 pb⁻¹
- Inclusive lepton trigger : $E_T (P_T) > 18 \text{ GeV}$
- Offline, $E_T(P_T) > 25(20) \text{ GeV}$
- Central-Central, Central-Plug used
- Z⁰ mass cut
- Backgrounds : Drell-Yan dominant, t-tbar, W-pair etc...

 $Z' \rightarrow ee (448 \text{ pb}^{-1})$

Dimuon Invariant Mass (GeV)

Spin dependent Acceptance

- Angular Distribution(and so Acceptance) depends on the spin of the decaying particle
- Geometric & Kinematic acceptance for each spin by MC(Pythia & CTEQ5L)

Total dilepton efficiencies ~ 50% for $M_X > 400 \text{ GeV/c}^2$

$\sigma * BR Limits (X \rightarrow ee or \mu\mu)$

- σ *Br limit ~25 fb for all spins for the high mass region (M₁₁ > 600 GeV)
- These curves can be compared with many models
- Reminder: spin-1: all the heavy Z, Technimeson, 2: RS graviton, 0: RPV sneutrino

Z' LIMITS (spin-1)

Technicolor (spin-1)

Spin-1 ee + $\mu\mu$

• From the spin-1 dilepton result, mass bounds are also obtained for ρ_T and ω_T for different M_T .

• M_T is a parameter in the Strawman TC model which affects the production cross section and the decay rates.

Μ _T	mass limit	(GeV/c ²)
500	320	
400	315	
300	310	
200	225	

Technicolor

- Can search for Technicolor in many signatures
- This search explores same signature as SM Higgs (lvbq)

note: We had mass bounds on this channel in Run I. Run II cross section limit is better than Run I. The theoretical prediction was revised downwards.

RS Graviton (Spin -2)

Coming Full Extra Dimension results later

Extra Dimensions (ED)

Alternatives to SUSY for resolving the hierarchy problem ($M_{EW} \ll M_{Plank}$?) In this model, gravition can propagate in additional spatial dimensions

• Models with n extra spatial dimensions

Graviton Emission

LED – graviton exchange

 \bullet Gravity effect is parametrized by η_G

- η_G : effective x-section parameter (=F/M_S⁴)
- F is a model dependent dimensionless parameter ~ 1

=2

✓ GRW:
$$F = 1$$

✓ HLZ: $F = \log(Ms2/M2), n$
✓ $F = 2/(n-2), n > 2$

✓ Hewett: F = 2 λ/π, λ = ±1

DØ Search Strategy:

- \rightarrow Combine ee & $\gamma\gamma$ to diEM signature
 - → Fit distribution of M vs $\cos\theta^*$ of Data SM
 - \rightarrow Extract η_G from the fit for different models
 - \rightarrow Translate η_G into Ms limit

LED ($ee + \gamma\gamma$): graviton exchange

- Fit M_{ee} , $M_{\gamma\gamma}$ and $\cos\theta^* \rightarrow$ Data consistent with background expectation
- Bayesian likelihood fitting \rightarrow set 95% CL on η_G
- 95% CL mass limits on Fundamental Planck Scale(Ms) (in TeV)

	GRW	HLZ for n =	Hewett	
		2 3 4 5 6 7	$\lambda = +1$	CDF w/ ee channel
DØ RunII	1.36	1.56 1.61 1.36 1.23 1.14 1.08	1.22	w/ 200 pb ⁻¹ →
DØ RunI + Run II	1.43	1.67 1.70 1.43 1.29 1.20 1.14	1.28	1.11 for GRW

Randall-Sundrum Graviton (ee+ $\mu\mu$ + $\gamma\gamma$)

- ee + $\mu\mu$ has largest acceptance at low mass
- $\gamma\gamma$ has largest acceptance at high mass $BR(G \rightarrow \gamma\gamma) = 2 * BR(G \rightarrow ee)$
- Randall-Sundrum gravitons are excluded by these data in the plane of coupling (k/M_{Pl}) versus effective graviton mass. e.g. for $k/M_{Pl}=0.05$ masses less than 640 GeV are ruled out at 95% C.L..

TeV⁻¹ ED and LED (graviton emission)

- TeV⁻¹ ED : Gauge Boson Exchange
- Limited by statistics, not by systematics
- set Limit on M_C via η_C (replacement of η_G)
- Lower Limit on compactification scale:

 $M_{C} > 1.12$ TeV at 95% CL

• World Limit(incl. LEP indirect search limit) :

 $M_{C} > 6.8$ TeV at 95% CL

- LED : Graviton Emission
- jet + MET channel
- MET > 150 GeV , High p_T jet (p_T > 150 GeV/c)
- Backgrounds : Z+jets, W+jets & QCD
- limited by jet energy scale uncertainty

W'(\rightarrow ev) search

 \sim

Events per 10 GeV/c

- Additional Charged Heavy Vector Boson : W'
- from theories based on extension of the gauge group
- Left-Right Symmetric SM :
 - $SU(2)_L XSU(2)_R XU(1)_Y$
- \bullet assuming ν to be light and stable

high p_T electron + high MET
✓ one isolated electron p_T > 25
✓ MET > 25
✓ for QCD rejection
✓ 0.4 < p_T/MET < 2.5
✓ veto dilepton events
(Drell-Yan, Diboson, tt̄)

Transverse Mass distribution(MC)

W' search (cont.)

Highest M_T events at 524 GeV/ c^2

W' search (cont.)

	Events in Each M_T Bins (GeV/ c^2)					
	200 - 250	250 - 350	350 - 500	500 - 700	700 - 1000	
$W \rightarrow e \nu$	35.8 ± 4.3	19.5 ± 2.5	4.34 ± 0.99	1.08 ± 0.73	0.0 ± 0.0	
Jets	2.6 ± 6.3	0.0 ± 3.4	0.0 ± 0.31	0.0 ± 0.0	0.0 ± 0.0	
Other Backgrounds	5.0 ± 0.7	3.2 ± 1.2	2.76 ± 3.26	0.12 ± 0.04	0.04 ± 0.02	
Total Background	43.3 ± 7.6	22.7 ± 4.5	7.10 ± 3.66	1.20 ± 0.77	0.04 ± 0.02	
Data	41	21	9	1	0	

DongHee Kim (Kyungpook National University/CDF) PASCOS05

- No evidence of W' existing
- Set limits on $\sigma^*Br(W' \rightarrow ev)$ assuming SM coupling strength
- use binned likelihood fitting method
 - **Dominant systematics** : PDF and electron energy scale

Limit: $M(W'_{SM}) > 842 \text{ GeV/c}^2$

Run I results : $M(W'_{SM}) > 754 \text{ GeV/c}^2 \text{ CDF}$

Leptoquarks(LQ)

• Color-triplet particles coupled both quarks and leptons

Predicted in many extensions of SM(GUT, Superstring, compositeness, technicolor etc..)
 Carry both lepton and color quantum numbers

- Couple only to fermions of same generation due to no FCNC & helicity supp. decay
- At the Tevatron, pair-produced by gg fusion or q qbar annihilation
- Decay channel is controlled by $\beta = BR (LQ \rightarrow lq)$

Search of each generation LQ in channels (example: For 1st, eejj, evjj, vvjj)

1st generation LQ : eejj channel

• Background

- ✓ Drell-Yan/Z + jets,
- ✓ QCD (with 2 fakes EM)
- ✓ t tbar

Selections

- ✓ Electrons : $E_T > 25 \text{ GeV}$
- ✓ Jets : $E_T > 20$ GeV, $|\eta| < 2.4$
- \checkmark Z veto
- ✓ Signal Efficiency = 12 33 %

1st & 2nd Generation LQ

Channels: *eejj*, *evjj*, (*vvjj*)

μμjj μvjj vvjj

3rd generation LQ

channel: $\tau_{I}\tau_{h}jj$ (one leptonic, one hadronic decayed τ 's)

CDF: Run II, $M_{LQ} > 129 \text{ GeV/c}^2$

Monopole Search

• Magnetic charge is very large.. \rightarrow Highly Ionizing

✓ Very Large pulses in Time of Flight (TOF)

 \checkmark ~ several hundreds MIPs

- ✓ Large ionization in drift chamber (COT)
- ✓ Curvature in r-z instead curvature in r-phi

✓ parabola curves due to relativistic effect

• 'Discovery' can be claimed by one Event !

Monopole Search Result

Compositeness

q

q

- p pbar \rightarrow e* + e \rightarrow e γ + e
- Expected in many Compositeness models
- + σ depends on M_{e^*} and compositeness scale A.(CI model)
- absence of significant background
 - Z_γ, Z+jet, WZ, W+jet etc..

$\sigma * BR Limits (e^* \rightarrow e_{\gamma})$

Conclusion

- Current results mostly based on 200 ~ 300 pb⁻¹
- > At present, ~ 800 pb⁻¹ on tape
- Surpassed sensitivities and results from run 1
- > World best Limits on Z', LQ, LEDs etc..
- ➢ Second stage of analysis with ~ 1 fb⁻¹ data
- > At the end of 2009, we may have $4 \sim 8 \text{ fb}^{-1}$
- > So far, only ~ 5% of data analyzed from expected data till 2009
- God knows what ... about bumps becoming real discoveries !!??

