

A Little X(3872) Background:

- Aug'03: Belle Annouced Discovery of $X(3872) o J/\psi \pi^+\pi^-$
- Obvious Interpretation: ${}^{3}D_{2}$ Charmonium?... But X Too Heavy
- Curious Facts: $\#1: M(X) \approx M(D^0 \overline{D}^{*0})$

#1. $M(X) \sim M(D D)$ #2: Favors High $\pi\pi$ -Masses $\rightarrow J/\psi\rho$ Decay? ... $J/\psi\rho \rightarrow$ Isospin Breaking If $c\bar{c}$

- Seductive Hypothesis: Deuteron-Like $D^0-\overline{D}^{*0}$ "Molecule"? > Naturally Explains: Mass & Isospin
- Other Hypotheses: $cq-\bar{c}\bar{q}$ -Diquarks, $c\bar{c}g$ -Hybrid, Cusp
- Spring '05: Belle Measuring Angular Distributions & $M(\pi\pi)$: \implies Argues 1⁺⁺ Preferred [hep-ex/0505038]
- Range of Strong Opinions, But...

 \Rightarrow No Interpretation Firmly Established \Leftarrow

Dipion Mass Spectrum:

- Belle Discovery: High $\pi\pi$ Masses Favored
 - \Rightarrow Contrary to Some $c\bar{c}$ Options
- Speculation: Actually $X \to J/\psi \rho$? \Leftarrow Isospin Violating for $c\bar{c}$! \Rightarrow Another Hint of Molecular Nature??
- CDF has Large X Sample But Large Background Too

 Divide J/ψππ Sample Into "Slices" of M(ππ)
 Fit Each Slice for ψ(2S) and X(3872) Yields

For Example (360 pb⁻¹
$$\rightarrow$$
 1.3k X's):

X(3872) Dipion Spectrum: Charmonium Fits

X(3872) Dipion Spectrum: $J/\psi\rho$ Fits

• April '05 CDF Released $J/\psi\rho$ Fit Based on Simple Non-Relativistic Breit-Wigner × Phase Space:

- \Rightarrow Do CDF Fit With Belle's L = 1 Model: CDF $\rightarrow 0.1\%$ Too!
- But Is This a Robust Result?.....

events/10 MeV

More Sophisticated Breit-Wigner Model

- Relativistic Breit-Wigner ←
 - \leftarrow (Rel. Not Very Important)
- Phase Space Modified by Centrifugal Barrier
- Blatt-Weisskopf Form Factors ← Absent In Belle's Model

$$rac{dN}{dm_{\pi\pi}} \propto (k^*)^{2L_X+1} igg[rac{f_{L_X}(k^*)}{f_{L_X}(k^*_0)} igg]^2 rac{m_{\pi\pi}\Gamma_
ho(m_{\pi\pi})}{(m_{\pi\pi}^2-m_
ho^2)^2+m_
ho^2\Gamma_
ho^2(m_{\pi\pi})}$$

• Mass Dependent Width:

$$\Gamma_
ho(m_{\pi\pi}) = \Gamma_
ho^{
m PDG} igg(rac{q^*}{q_0^*} igg)^{2L_
ho+1} igg(rac{f_{L_
ho}(q^*)}{f_{L_
ho}(q_0^*)} igg)^2 rac{m_
ho}{m_{\pi\pi}}$$

• Blatt-Weisskopf (1952) Form Factors:

$$\frac{f_0(x)}{f_0(x_0)} = 1 \quad \& \quad \frac{f_{L_i=1}(x)}{f_{L_i=1}(x_0)} = \sqrt{\frac{1+R_i^2 x_0^2}{1+R_i^2 x^2}} \xleftarrow{R \to 0 \Rightarrow \text{No FFactor}}_{R \to \infty \Rightarrow \text{Turn-Off } L}$$

• Center-of-Mass Momenta: $q^* = \sqrt{m_{\pi\pi}^2 - 4m_{\pi}^2}/2 = \pi$ Momentum in ho Center of Mass & $q_0^* = q^*(m_
ho)$ $k^* = \sqrt{(M_X^2 - (m_\psi + m_{\pi\pi})^2)(M_X^2 - (m_\psi - m_{\pi\pi})^2)}/2M_X = p(J/\psi)$ in X CoM

PANIC05---Santa Fe, Oct 24-28, 2005

$J/\psi\rho$ Fits: With Ang.-*P* & Blatt-Weisskopf

- Blatt-Weisskopf Radii R_i NOT Well Known
- Values Suggested From Literature: $R_X = 1.0$ & $R_\rho = 0.3$ fm
- CDF Fits:

AND... There Are Further Shape Uncertainties...

$X ightarrow J/\psi \, \omega$ Decays

• Belle: Evidence for $X o J/\psi \, \pi^+\pi^-\pi^0$

[hep-ex/0505037]

- 3π -Mass Hugs Upper Kinematic Limit ω Just Above Limit \Rightarrow Interpreted as $X \to J/\psi \, \omega^*$
- As Such, Belle Measures:

$${\cal R}_{3/2} \equiv {{\cal B}(X o J/\psi \, \omega) \over {\cal B}(X o J/\psi
ho)} = 1.0 \pm 0.5$$

- $\omega
 ightarrow \pi^+\pi^-$ Negligible: $\sim 2\%$ of $\omega
 ightarrow 3\pi$
- BUT Interference Effects Need NOT Be! Crudely, Interference of Order $\sim \sqrt{\mathcal{B}(\rho \rightarrow 2\pi)} \cdot \mathcal{B}(\omega \rightarrow 2\pi) \sim 13\%$
- Suppressing Phase-Space and Blatt-Weisskopf Factors, Write 2π Mass Spectrum As:

$$\sim \left| \begin{array}{c} A_{\rho} \frac{\sqrt{m \, m_{\rho} \Gamma_{\rho}(m) K_{\rho}}}{(m^2 - m_{\rho}^2) + i m_{\rho} \Gamma_{\rho}(m)} + e^{i \phi} A_{\omega} \frac{\sqrt{m \, m_{\omega} \Gamma_{\omega 2\pi}(m) \mathcal{B}_{2\pi} K_{\omega 2\pi}}}{(m^2 - m_{\omega}^2) + i m_{\omega} \Gamma_{\omega}(m)} \right|^2 \\ - \frac{A_{\rho} \& A_{\omega} \text{ Intrinsic } X \text{-Decay Amplitudes}}{- \phi \text{ Relative } \rho \text{-} \omega \text{ Phase}} \\ - \frac{K_i \text{'s Norm. Factors}}{- K_i \text{'s Norm. Factors}}$$

$X ightarrow J/\psi \, \omega$ Decays

- Describe $\omega \to 3\pi$ With Similar Breit-Wigner: - No A_{ρ} Term — SAME A_{ω} Amplitude $-\Gamma_{\omega 2\pi}(m) \rightarrow \Gamma_{\omega 3\pi}(m)$ - $\Gamma_{\omega 3\pi}$ Adapted From SND Exp: $e^+e^- \rightarrow \omega^* \rightarrow \pi^+\pi^-\pi^0$ [Achasov PRD68 052006 (2003)] Main Features: 1) Use $ec{q}_+ imes ec{q}_- ert^2$ Matrix Element 2) Describe as $\omega \to \rho \pi \to \pi^+ \pi^- \pi^0$ • Integrate Over Mass \Rightarrow Relation Between $2\pi \& 3\pi$ Yields: $(\ldots)K_{\rho} + (\ldots)\sqrt{K_{\rho}K_{\omega 2\pi}\mathcal{B}_{2\pi}} \left| \frac{A_{\omega}}{A_{\rho}} \right| + (\ldots)K_{\omega 2\pi}\mathcal{B}_{2\pi} \left| \frac{A_{\omega}}{A_{\rho}} \right|$ Interference $=\frac{1}{\mathcal{R}_{3/2}}(\dots)\frac{K_{\omega 3\pi}\mathcal{B}_{3\pi}}{\varkappa}$ "Pure ρ "
 - (...) = Integrals over Breit-Wigners (Phase Dependent!) \Rightarrow Solve for $|A_{\omega}/A_{\rho}|$...
 - \Rightarrow Compute Fraction of "Pure ρ ," Interference, & "Pure ω "...

Fit Dipion Spectrum: e.g. 95° Phase

 $\bigoplus \text{Assume Phase <u>Entirely</u> from } \rho - \omega \text{ Mixing } \Rightarrow \phi \sim 95^{\circ} \\ \dots \text{ Like } e^+e^- \rightarrow \pi^+\pi^- \\ \bigoplus \text{ Use Belle's Measurement: } \mathcal{R}_{3/2} = 1.0 \pm 0.5 \\ \implies \text{Fit:}$

- L = 0 Breit-Wigner Naturally Peaks At High $M(\pi\pi)$ — With Interf. Starts to Peak Too Much (Prob $\downarrow 19\%$)
- L = 1 Briet-Wigner Peaks Not So High in $M(\pi\pi)$
 - Interf. Makes-Up Shortfall (Prob $\uparrow 53\%$)

 \Rightarrow Models Can Accommodate BOTH $L = 0 \& 1 \Leftarrow$

CDF Fit Probability Vs. Phase:

• Use Computed Fractions \Rightarrow Fit Prob. as Function of ϕ :

- Large Prob. for L = 0 No Matter What the Phase
- For Certain Phases L = 1 Fits Have Very High Prob.
- L = 0 Prefers Small $\mathcal{R}_{3/2} L = 1$ Prefers Large $\mathcal{R}_{3/2}$
- ullet Big Picture Insensitive Over Belle's $\pm 1\sigma$ Error on $\mathcal{R}_{3/2}$
- But Sensitive to R_X & Shapes of $\Gamma_{\omega 2\pi}(m)$ Vs. $\Gamma_{\omega 3\pi}(m)$

- X-Production At Tevatron Looks Charmonium-Like
 - \Rightarrow Charmonium? OR At Least Large $c\bar{c}$ Component?
 - \Rightarrow If $D-\overline{D}^*$ Molecule: Little Penalty to Produce Fragile Object!
- $\pi\pi$ -Mass Spectrum:
- \Rightarrow Multipole Expansion \Longrightarrow No Viable $C_X = -1$ Charmonia
- $\Rightarrow X \rightarrow J/\psi
 ho$ Fits Very Well! $\Longrightarrow C_X = +1 \leftarrow$ Belle Now Sees $J/\psi \gamma$!
- \Rightarrow Model Uncertainties Allow BOTH S- & P-Wave Decays
 - e.g. Odd Parity States Like $^1D_2~(2^{-+})$ of $car{c}$
- $\Rightarrow \text{ Intrinsic Rate of } X \text{ Decay to } J/\psi\rho \text{ IS Suppressed (Isospin?):} \\ \mathcal{B}(J/\psi\rho) \approx \mathcal{B}(J/\psi\omega) \text{ YET } \rho \text{ Phase-Space} \gg \omega \text{ Phase-Space}$
- First Consideration of ho- ω Interference for X(3872)
- \Rightarrow *P*-Wave Fits Improved by ρ - ω Interference
- \Rightarrow Belle's $J/\psi \omega$ Signal Nicely Accommodated within CDF Fits

BACKUP SLIDES

ρ-Model Sensitivity:

- Key Ingredient in Breit-Wigner Is Blatt-Weisskopf Radius R_i
- Commonly Used, But Not Well Constrained by Other Exp's

Model Sensitivity: Blatt-Weiss. $R_{\rho} \& R_X$

- For $\phi = 95^{\circ}$
- L = 1

- Strong R_X Dependence
- Weak R_{ρ} Dependence
- \implies But Big Picture Unchanged Over Broad Range of R's

ρ -Model Sensitivity: ω/ρ -Ratio & Phase

Interference Phase: 95°

PANIC05---Santa Fe, Oct 24-28, 2005

Fractions Versus Phase:

- ullet Compute Fractions as Function of ϕ
- Bands Span Belle's $\pm 1\sigma$ Range

- Not Much Different for L = 0 & 1
- Fractions Are Mathematical Computation of the Model
 Nothing to Do With CDF Data!
- Data Says How Well These Fractions Work \implies CDF Fits

Dipion Mass Spectrum:

Prompt *vs B***-Production:**

Standard Technique to Distinguish B From Non-B Production:

- Measure Apparent "Lifetime" of X(3872) $[\tau(X) = 0!]$
- Fit Relative "Prompt" and "Displaced" Fractions

Details:

- Measure Displacement of Vertex: L_{xy}
- "Proper Time":

 $egin{aligned} m{ct} \equiv rac{M(J/\psi\pi^+\pi^-)}{p_T(J/\psi\pi^+\pi^-)}m{L}_{xy} \end{aligned}$

- Missing B-Decay Products
 ⇒ NOT True ct
 ⇒ Don't Care!
- Likelihood Fit:

 \rightarrow Fraction of Displaced X's

 $B \rightarrow X(3872)....$ $J/\psi \pi^{+}\pi^{-} \pi^{-} \mu$ B-Decay Vertex $L_{xy} - \pi^{-} \pi^{-} \pi^{-} \mu$ Frimary Vertex

 \implies Use Same X Sample as M-Measurement: 220 pb⁻¹

 \implies +<u>Vertexing Cuts</u> (SVX, $\sigma(Vrtx),...$): -15%

 \dots & $\psi(2S)$ a Good Reference Signal...

Displaced Fraction: $\psi(2S)$

[Previously Studied: CDF PRL79, 572 (1997)]

Displaced Fraction: X(3872)

Displaced *X*-**Frac**:

 $16.1 \pm 4.9\,(stat) \,\pm 2.0\,(syst)$ %

$\Rightarrow X$ Mostly <u>PROMPT</u>!

$B \rightarrow X(3872) \dots$ Significance:

- Belle: KNOW $B \rightarrow X \dots$ is Significant
- Now KNOW Prompt Dominates CDF Signal...
 - But Error on B-Fraction Not Small... $16.1 \pm 4.9(stat)\%$

 \implies Could It "<u>ALL</u>" Be Prompt?

- > Naively: $16.1/4.9 \rightarrow \sim 3.3\sigma$ Null Hypothesis Excluded
- > MC: NO B-Signal to Fluctuate $\geq 16.1\%$ is 3σ
- > Still... Good to Take Direct Look at Data...

 \implies Project Likelihood for High-ct Tails:

