

Standard Model and Supersymmetric Higgs at CDF

Outline:

	Current Knowledge of Higgs	
Ben Kilminster	CDF searches :	
Ohio State University	Direct Higgs (1 analysis Associative Higgs (3)	5)
on behalf of CDF	MSSM Higgs (2)	
collaboration	Tevatron Discovery potential	
Ben Kilminster PANIC 2005	CDF SM & MSSM Higgs 24 Oct. 2005; p.1	of 1

- Higgs mechanism gives mass to Standard Model particles
- But required Higgs boson not yet discovered !
 - > Therefore, some alternatives to experimentally check :

"Standard Model" (SM)

- Simplest Higgs mechanism possible
- Higgs is 1 particle
 - ► H
 - > spin 0
 - electrically neutral
 - > interacts with all SM particles
 - more strongly with higher mass particles

"Minimally Supersymmetric Model" (MSSM)

- Next most simplest Higgs mechanism possible
- Higgs are 5 particles
 - h, A, H, H+, H-
 - > spin 0
 - electrically : -1,0, +1
 - interact with all SM particles
 - more strongly with higher mass particles
 - enhancement to down-type quarks from tan β parameter (relates to Vacuum Expec. Val.)

```
SM not wrong yet !
```

MSSM popular step toward unified theory

PANIC 2005: CDF SM & MSSM Higgs

24 Oct. 2005; p.2 of 13

Expected Higgs mass (& type=SM or MSSM)

- SM Higgs Channels :
 - $p\bar{p} \rightarrow W^{*} \rightarrow WH \rightarrow l_{V}b\bar{b}$ $p\bar{p} \rightarrow Z^{*} \rightarrow ZH \rightarrow l^{+}l^{-}b\bar{b}$ $p\bar{p} \rightarrow Z^{*} \rightarrow ZH \rightarrow v_{V}b\bar{b}$ $p\bar{p} \rightarrow H \rightarrow W^{+}W^{-} \rightarrow l^{+}l^{-}v\bar{v}$

PANIC 2005: CDF SM & MSSM Higgs

24 Oct. 2005; p.5 of 13

Search for SM pp \rightarrow W* \rightarrow WH \rightarrow Ivbb

• Strategy :

 \cdot H \cdot

high P_T lepton + missing energy + 2 jets

Separate signal from W+heavy flavor and W+light flavor backgrounds

- Use b-tagging algorithm
- Requires MC estimations and excellent knowledge of "mistag" rate of light flavor jets

W+light flavor estimated from number of tags with negative lifetime

Results :

- Examine dijet mass for resonance
- Consistent with SM
- •Set a limit on Higgs production :

σ(M_H = 115 GeV) < 8.6 pb

PANIC 2005: CDF SM & MSSM Higgs

• Strategy :

 \cdot H \cdot

- Identify Z boson decaying to two high Pt leptons + 2 or 3 jets (w/ b-tag)
- Lepton ID cuts into acceptance
- Use Artificial Neural Net (NN)
 to separate signal with main bkg
 of Z+jets

Results :

- NN improves S/B resulting in effective 1.6 increase in luminosity
- Expect result with 1 fb⁻¹ data

PANIC 2005: CDF SM & MSSM Higgs

Ben Kilminster

PANIC 2005: CDF SM & MSSM Higgs

with jet (mismeasured QCD dijet)

Results:

Consistent with SM

Z decays to neutrinos

Need to model MFT well

Remove events where MET aligns

with 2 jets, 1 b-tag

- Set a limit on Higgs production
- σ (M_H=115 GeV) < 5 pb

10 80 100 120 140 160

Events/10 GeV 01...

ZH→v⊽bb̄ Search

CDF Run II Preliminary 289pb⁻¹

Data

Scale MC to reproduce MET in data

Search for SM pp \rightarrow Z* \rightarrow ZH \rightarrow vvbb

Missing E_{τ}

Strategy :

 \cdot H \cdot F

- •Strategy :
 - Most sensitive channel to high mass Higgs
 - Search for 2 high P_{T} leptons and MET
 - Angular correlations between leptons different than WW
 BKG since H is scalar

Results :

- Consistent with SM
 - 13.8 + 1.2 pred. bkg
 - 0.58 +- 0.04 pred. sig
 - 16 in data
 - o (M_H=160 GeV) < 3.2 pb

Summary of SM Higgs searches

2003 Sensitivity Projections

- m_H = 115 GeV
 - ~ 2 fb⁻¹ for exclusion (if not there)
 - ~ 4 fb⁻¹ for m_H = 115 3 σ evidence
- Assumes :

 $\cdot H \cdot E$

- all Higgs channels combined at both CDF and D0
- realistic data, no systematics
- 8 fb⁻¹ by 2009 is design

2005 Status

- CDF preliminary results with 200 400 pb⁻¹ data
 - channels not combined, some missing
 - need factor of 30-40
 - □ factor of ~20 from data up to 2009
 - □ factor of 2 from CDF/D0 combination
- Working on ways to improve sensitivity
 - Neural Nets for everyone ! (factor of ~1.7)
 - Improved jet resolution (1.1 for each 1%)
 - > Improved lepton acceptance (> 1.5)

PANIC 2005: CDF SM & MSSM Higgs

24 Oct. 2005; p.10 of 13

PANIC 2005: CDF SM & MSSM Higgs

24 Oct. 2005; p.11 of 13

 $BR(t \rightarrow H^+b)$

 \cdot H \cdot

In SM

□ t→W⁺b

- $\Box W^{+} \rightarrow I^{+}v (1/3), W^{+} \rightarrow qq (2/3)$
- > In MSSM (for $M_H < M_t$)
 - □ t→H⁺b, t→W⁺b
 - □ At high tan β , $H^+ \rightarrow \tau v$
 - $\Box \quad \text{At low tan } \beta \ \mathbf{H}^{+} \rightarrow \mathbf{cs}$
- Find excesses and deficits w.r.t. SM top !

Results :

- >No significant excesses or deficits found
- \succ We can exclude regions of the $M_{H^{\star}}$ vs tan β plane for various MSSM scenarios

¬ Branching ratio limit independent of MSSM scenarios
BR(t→H+b)<0.4 @95%CL for 80 GeV<mH±<160 GeV</p>

Ben Kilminster

 $\cdot H \cdot E$

PANIC 2005: CDF SM & MSSM Higgs

24 Oct. 2005; p.12 of 13

Conclusions

- CDF exploring all SM and MSSM Higgs possibilities
- SM
 - Direct Higgs production
 - □ high production cross-section
 - $\Box H \to WW$
 - Associative higgs production
 - leptons + b jets (+ miss. E.) distinct signature
 - $\square \quad WH \rightarrow I_{V}, \ ZH \rightarrow vvbb, ZH \rightarrow I^{+}I^{-}bb$
 - Limits will improve with luminosity and smarts !
 - 4 8 fb⁻¹ can find us a light Higgs
- MSSM
 - Neutral Higgs
 - $\hfill\square$ production cross section enhanced (tan β) ²
 - $\Box \ A {\rightarrow} \tau^{+} \tau^{-}$
 - Charged Higgs
 - capitalize on knowledge of top
 - □ † → H⁺ b

Cutting into allowed MSSM parameter space !

Accelerator Division, CDF, and DO working together

against the clock

BACKUPS

Ben Kilminster

PANIC 2005: CDF SM & MSSM Higgs

24 Oct. 2005; p.14 of 13

Couplings of MSSM Higgs Bosons Relative to SM

W and Z couplings to H, h are suppressed relative to SM (but the sum of squares of h⁰, H⁰ couplings are the SM coupling). Yukawa couplings (scalar-fermion) can be enhanced

Ben Kilminster

 \cdot H \cdot E

PANIC 2005: CDF SM & MSSM Higgs

24 Oct. 2005; p.15 of 13

Luminosity Equivalent $(s/\sqrt{b})^2$

ZH→llbb Improvement WH→lvbb ZH→vvbb Mass resolution 1.7 1.7 1.7 Continuous b-tag (NN) 1.5 1.5 1.5 Forward b-tag 1.1 1.1 1.1 Forward leptons 1.3 1.0 1.6 Track-only leptons 1.4 10 1.6 NN Selection 1.75 1.75 1.0 WH signal in ZH 1.0 2.7 1.0 Product of above 8.9 13.3 7.2 CDF+DØ combination 2.0 2.0 2.0 All combined 17.8 26.6 14.4

Start with existing channels, add in ideas with latest knowledge of how well they work.

Expect a factor of ~10 luminosity improvement per channel, and a factor of 2 from CDF+DØ Combination Ben Kilminster PANIC 2005: CDF SM & MSSM Higgs 24 Oct. 2005; p.16 of 13

Cross-Section times branching fraction limit as a multple of the SM rate

lvbb vvbb llbb WW WWW As They Are

ELuminosity Thresholds for CDF's Channels Combined

Assumption: Systematic errors scale with $1/\sqrt{\int \mathcal{L} dt}$

 \cdot H \cdot

All channel's luminosities scaled to 300 pb⁻¹ and then scaled together

Lumi Thresholds -- lvbb,vvbb,llbb,WW,WWW As They Are

m_H=115 GeV assumed

PANIC 2005: CDF SM & MSSM Higgs

24 Oct. 2005; p.19 of 13

