Studies of Orbitally Excited D^{**} and B^{**} Mesons at CDF and DØ

- Motivation
- TeVatron Detectors
- Results
- Conclusions
- Future Research

Jennifer Pursley *The Johns Hopkins University* on behalf of the CDF and DØ Collaborations

Particles and Nuclei International Conference – Santa Fe, NM October 24-28, 2005

Motivation: HQET

- Heavy-light bound state
- Heavy Quark Effective Theory
 - treat $m_{c(b)} \rightarrow \infty (\gg \Lambda_{QCD})$
 - precise predictions for mass, width, decay branching fractions
- D^{**}_(s), B^{**} = first radial excitation of light quark (L = 1 states)
- Spectroscopy of these states not well studied
- Heavy excited states produced abundantly at TeVatron

TeVatron Performance

- $\sqrt{s} = 1.96 \text{ TeV } p\overline{p} \text{ collider}$
 - Performance consistently improving
 - World Record initial luminosity at a hadron collider 1.42x10³² sec⁻¹cm⁻² (Oct 4, 2005)

FERMILAB'S ACCELERATOR CHAIN

- Both experiments have ~ 1 fb⁻¹ to tape
 - Results use 210 pb⁻¹ (2003 shutdown) up to 490 pb⁻¹ (2004 shutdown)
 - Results with new data out SOON

CDF and DØ Detectors

• CDF

- Wire drift chamber
- Silicon vertex trigger
- Triggered muon coverage $|\eta| < 1.1$

DØ

- Scintillating fiber tracker and silicon
- Trigger tracking to $|\eta| < 2$
- Triggered muon coverage $|\eta| < 2$

PANIC 2005

Data Samples

- J/ψ samples:
 - Exclusive $B \rightarrow J/\psi$ K modes
 - Dimuon trigger
- Semileptonic $B \rightarrow D\ell vX$ samples:
 - DØ has larger muon acceptance
 - CDF lowers lepton trigger p_T by requiring additional displaced track
- Fully hadronic samples (CDF only):
 - Secondary vertex trigger
 - Fully reconstructed B events

D^{**} narrow states: D_1^0 and D_2^*

- CDF: 210 pb⁻¹
 - Two channels, $D^0 \rightarrow K^+\pi^-$ and $D^+ \rightarrow K^-\pi^+\pi^+$
 - $D^{**0} \rightarrow D^{*+}\pi^{-}, D^{*+} \rightarrow \pi^{+}D^{0}$
 - $D^{**0} \rightarrow D^{+}\pi^{-}$ (also feed-down from $D^{*+} \rightarrow \pi^{0}D^{+}$)
- Fit mass difference $M(D^{**0}) M(D^{(*)+})$
- Best measurement!
 - $M(D_1^{0}) = 2421.7 \pm 0.7 \pm 0.6 \text{ MeV/c}^2$ (seen at Belle, $M(D_1^{0}) = 2427 \pm 26 \pm 25 \text{ MeV/c}^2$)
 - $\Gamma(D_1^{0}) = 20.0 \pm 1.7 \pm 1.3 \text{ MeV/c}^2$
 - $M(D_2^{*0}) = 2463.3 \pm 0.6 \pm 0.8 \text{ MeV/c}^2 (PDG)$ average $M(D_2^{*0}) = 2461.1 \pm 1.6 \text{ MeV/c}^2)$
- $\Gamma(D_2^{*0}) = 49.2 \pm 2.3 \pm 1.3 \text{ MeV/c}^2$ CDF public note 7191 J. Pursley

D^{**} narrow states cont.

- DØ: 460 pb⁻¹
- Semileptonic
 - $B \rightarrow D_1^{\ 0} \mu^+ \nu_\mu X \text{ and } B \rightarrow D_2^{\ *0} \mu^+ \nu_\mu X$
 - $B \rightarrow D^* \pi^+ \mu^+ \nu_{\mu} X$:
 - find $\mu^+ D^0$
 - add soft track of opp. charge to D⁰ for D^{*-}
 - Add π^+ to D^{*-} to reconstruct D^{**} decay
- Normalization to $\beta(\overline{b} \rightarrow D^{*-} l^+ \nu X) = (2.75 \pm 0.19)\%$ (PDG avg.)
- Order of magnitude better than previous results!
 - $\beta(\overline{b} \to B) \cdot \beta(B \to (\overline{D}_{1}^{0}, D_{2}^{*0}) \mu^{+} \nu_{\mu} X) \cdot \beta((\overline{D}_{1}^{0}, \overline{D}_{2}^{*0}) \to D^{*-} \pi^{+}) = (0.122 \pm 0.007 \pm 0.015)\%$
 - $\beta(\overline{b} \to B) \cdot \beta(B \to \overline{D}_{1}^{0} \mu^{+} \nu_{\mu} X) \cdot \beta(\overline{D}_{1}^{0} \to D^{*} \pi^{+}) = (0.087 \pm 0.007 \pm 0.015)\%$
 - $\beta(\overline{b} \to B) \cdot \beta(B \to \overline{D}_{2}^{*0} \mu^{+} \nu_{\mu}^{X}) \cdot \beta(\overline{D}_{2}^{*0} \to D^{*-} \pi^{+}) = (0.035 \pm 0.007 \pm 0.008)\%$
 - $\frac{\beta(B \to \overline{D}_2^{*0} \mu^+ \nu_{\mu} X) \cdot \beta(\overline{D}_2^{*0} \to \overline{D}^{*-} \pi^+)}{\overline{D}_2^{(D-1)} \overline{D}_2^{(D-1)} + \overline{D}_2^{(D-1)} \overline{D}_2^{(D-1)} + 0.09 + 0.12}$

$$\boldsymbol{\beta}(\mathbf{B} \to \overline{\mathbf{D}}_{1}^{0}\boldsymbol{\mu}^{+}\boldsymbol{\nu}_{\boldsymbol{\mu}}\mathbf{X}) \boldsymbol{\bullet} \boldsymbol{\beta}(\overline{\mathbf{D}}_{1}^{0} \to \mathbf{D}^{*}\boldsymbol{\bar{\pi}}^{+})$$

PANIC 2005

J. Pursley

DØ PRL 95 171803 (2005)

First Evidence of $B_s \rightarrow D_{s1}^+ \mu v X$

- DØ: 485 pb⁻¹
- Complex 6 track final state: $B_s^0 \rightarrow D_{s1}^+ (2536) \mu^- \nu_\mu X$ $\rightarrow D_s^{*+} K_s^0$

- > 3.0 sigma significance
- Ability to measure production and properties of D⁺_{s1}
- Observe D_{s2}^{*+}(2573) with more data?

DØ conf note 4727

\mathbf{B}^{**} narrow states: \mathbf{B}_1 and \mathbf{B}_2

- DØ: 350 pb⁻¹
- Reconstruct $B^{**} \rightarrow B^{(*)}\pi^{-}$ in three decay modes:
 - $B^+ \rightarrow J/\psi K^+$ and $B^0 \rightarrow J/\psi K^{*0}$ and $B^0 \rightarrow J/\psi K_s$
- Add events from all three modes, fit mass difference $M(B\pi) M(B)$
- Fix $\Gamma(B_1) = \Gamma(B_2^*)$ (theoretical expectation), allow width to float in fit
- Fix $\frac{\beta(B_2^* \to B\pi)}{\beta(B_2^* \to B^*\pi)} = 1.0$ (theoretical expectation) $\frac{\beta(B_2^* \to B^*\pi)}{200}$
- First observation of separate peaks at a hadron collider; only narrow width measurement!
 - $M(B_1) = 5724 \pm 4 \pm 7 \text{ MeV/c}^2$
 - $M(B_2^*) M(B_1) = 23.6 \pm 7.7 \pm 3.9$ MeV/c²
 - $\Gamma(B_1) = \Gamma(B_2^*) = 23 \pm 12 \pm 9 \text{ MeV/c}^2$

DØ conf note 4517

PANIC 2005

B^{**0} narrow states cont.

- CDF: 370 pb⁻¹
- $B^{**0} \rightarrow B^{(*)+}\pi^{-}$ in two decay modes:
 - $B^+ \rightarrow J/\psi K^+$ and $B^+ \rightarrow D^0 \pi^+$
- Fit $M(B\pi) M(B) M(\pi)$ simultaneously for both modes
- Low statistics \rightarrow fix width to theoretical value, $\Re^{\frac{1}{2}}$ $\Gamma(B_2^{*0}) = 16 \pm 6 \text{ MeV/c}^2 \text{ (hep-ph/9507311)}$
 - Fix $\Gamma(B_1^{0}) = \Gamma(B_2^{*0})$

- Best measurement!
 - $M(B_1^0) = 5734 \pm 3 \pm 2 MeV/c^2$
 - $M(B_2^{*0}) = 5738 \pm 5 \pm 1 \text{ MeV/c}^2$

CDF and DØ results agree within errors; differences look like statistical fluctuations

PANIC 2005

 B^{**} mass in $B^* \rightarrow J/\psi K^*$ decays CDF Run II Preliminary: 370 pb⁻¹ Total fit Fit **Prob** = 91% $B_1 \rightarrow B^* \pi$ $B_{2}^{*} \rightarrow B \pi$ $B_{2}^{*} \rightarrow B^{*} \pi$ Total background Events 30 Non-Comb. Bkg. 20 10 0.2 0.4 0.6 $Q = m(B\pi) - m(B) - m(\pi)$ (GeV/c²)

Conclusions

Exp	Comment	B_i^* mass (MeV/c ²	²) B_i^* width (MeV/c ²)
CDF I	pp at 1.8 TeV	5710 ± 20	
DELPHI	$E_{cm}^{ee} = 88-94 \text{ Ge}$	eV $5732 \pm 5 \pm 20$	145 ± 28
OPAL	$E_{cm}^{ee} = 88-94 \text{ Ge}$	eV 5681 ± 11	116 ± 24
Exp	Comment	B_1^0 mass (MeV/c ²)	B_1^0 width (MeV/c ²)
DELHPI	$e^+e^- \rightarrow Z$	5732 ± 20	
DØ	$p\overline{p}$ at 1.96 TeV	$5724 \pm 4 \ \pm 7$	$23\pm12\ \pm9$
CDF	pp at 1.96 TeV	$5734 \pm 3 \pm 2$	
Exp	Comment	B_2^{*0} mass (MeV/c ²)	
DELHPI	$e^+e^- \rightarrow Z$	5738 ± 14	
CDF	$p\bar{p}$ at 1.96 TeV	$5738 \pm 5 \pm 1$	

- Best D^{**} narrow mass and width measurements
- Best D^{**} narrow semileptonic branching ratio measurement
- First observation of $B_s \rightarrow D_{s1}^{+} \mu \nu X$
- Best measurement of
 B^{**} narrow masses
- Best (only!)
 measurement of B^{**}
 narrow width

PANIC 2005

Future Research

- Measurements are statistically limited
 - More data being processed
- Results are interesting and competitive
 - DØ semileptonic branching fractions order of magnitude better than previous measurements
 - CDF B^{**} mass measurement the best so far
- New analyses ($eg B_s^{**}$ search) also underway
- All test different models of HQET

Stay tuned for more results from the TeVatron!

Backup Slides

- CDF: $M(B_2^*) M(B_1) \sim 4 \text{ MeV/c}^2$, DØ: $M(B_2^*) M(B_1) \sim 24 \text{ MeV/c}^2$
- Agrees within errors, but why the discrepancy?
 - Similar B decay channels $(B^+ \rightarrow J/\psi K^+)$
 - Tighter cuts for B^{**} pion in CDF: π in a cone around B, B isolation cut
 - Similar signal structure:
 - CDF non-rel. Breit-Wigner, DØ rel. Breit-Wigner
 - CDF width fixed, DØ width floats
 - $\beta(B_2^* \to B\pi)/\beta(B_2^* \to B^*\pi) = 1.1$ for CDF, 1.0 for DØ
 - Different background parameterizations
 - CDF: use B sidebands to separate combinatorial bkg
 - DØ: fit all bkg together
 - Evaluated same systematic errors (including one for bkg parameterization)
- Conclusion: statistical fluctuation, need more data PANIC 2005 J. Pursley