Searches for new Gauge Particles in Dilepton and Diphoton Final States at the Tevatron

Jedong Lee University of Rochester

For the CDF and D0 Collaborations

PANIC05 Oct 27, 2005

Introduction

- Gauge Particle : Force carriers.
 - Many theories (beyond SM) expect more than what we know.
 - Heavier ones may be discovered at CDF/D0. (Tevatron is the high energy frontier.)
 - Generated from qq annihilation from pp collision at 1.96 TeV.
- Dilepton/Diphoton channel
 - Signal is very clean.
 - Low SM background (mainly Drell-Yan) at high mass.
 - Better chance to find new particles.

Force	Gauge Boson
Electromagnetic	γ
Weak	W⁺,W⁻,Z
Strong	gluon
Gravity	Graviton

Z' Searches

- Z': Extra neutral gauge boson
 - Most extensions to SM predict at least one.
- Popular models
 - E6 GUT
 - Little Higgs
- Generic Z' model
 - Describes any effective U(1) gauge boson.³
 - Carena, Daleo, Dobrescu and Tait (FNAL).
 - Phys.Rev.D70:093009,2004
 - Use theory constraints to reduce the number of parameters.
 - Suppressed FCNC, no exotic fermions, anomaly cancellations.
 - Four scenarios with three parameters each.
 - $M_{Z'}Z'$ mass, $g_{Z'}$ strength, x coupling parameter

Generic Z' Search at CDF (ee)

- Integrated Luminosity 448 pb⁻¹.
- Selection
 - Two high P_T isolated electrons
 - Require opposite charge
- Dijet background estimated using jet fake rate.
- Systematic uncertainty dominated by background estimation.

Poisson Stat. Uncertainty

 Very good agreement between data and prediction.

-0.6

-0.8

²/dof=24/20

Data

Z/v→ e⁺e⁻ MC

Dijet background

Other backgrounds

-0.4

-0.2

.2 0 cos(θ*)

Events/0.2

140 120

100

80

60 40

20

0.8

0.6

M_{ee}>116 GeV/c²

0.4

0.2

Generic Z' Search at CDF (ee)

d-xu models

- CLs method for setting limits.
- Line : LEP exclusion.
- Colored : CDF Run II exclusion.
- Limits for the E6 Z's

	95% CL Limit
Seq.Z'	845 GeV/c ²
Zı	625 GeV/c ²
Zη	715 GeV/c ²
Zψ	690 GeV/c ²
Ζχ	720 GeV/c ²

More Channels

- Bayesian binned likelihood fitting set the limits.
 - 95% CL one-sided lower limits.
- $Z' \rightarrow \mu \mu$ at D0:
 - 250 pb-1
 - Sequntial Z' limit : 680 GeV/c²
- $Z' \rightarrow \tau \tau$ at CDF:
 - 195 pb-1
 - Sequential Z' limit : 394 GeV/c²

$W' \rightarrow e_V$ Search at CDF

- W': Extra massive charged gauge boson.
 - Predicted by left-right symmetric models.
- Look for excess in transverse mass (M_T) 205 pb⁻¹
 - Very good agreement over many orders of magnitude in M_T.
- Bayesian binned likelihood fitting; no evidence for W'
 - 95 % CL limit is set 788 GeV/c².

Extra Dimension and Graviton

- If extra dimensions are not small...
 - Fundamental Planck scale (M_S) can be within reach.
 - Graviton and/or other gauge bosons can escape our brane.
 - Particles get excited in the extra dimension (KK, Kaluza-Klein).
- Three scenarios: (there are many more)
 - ADD (Arkani-Hamed, Dimopoulos, and Dvali, Phys. Lett. B429, 263, (1998))
 - n (>2) extra dimensions with size R (between ~1nm and ~10fm).
 - Only graviton lives in the bulk... M²_{Planck} = M_sⁿ⁺²Rⁿ
 - Three ways of formulizing effective ADD (GRW, Hewett, HLZ)
 - DDG (Dienes, Dudas, and Gherghetta. Aka TeV⁻¹, Nucl. Phys. B537, 47 (1999))
 - Only $g/\gamma/W/Z$ propagate into extra dimension of ~1 TeV⁻¹ or 10⁻¹⁹m.
 - RS (Randall-Sundrum, Phys. Rev. Lett. 83, 3370 (1999))
 - Gravitons propagate into a single extra dimension of $\sim 1/M_{pl}$ or 10^{-35} m.

Virtual Graviton Effect

G_{KK}

ADD Model at D0 (ee, yy)

- Data agrees well with the SM background.
- Bayesian 95% CL limits for M_S.

GRW		1.36 TeV/c ²
Hewett	λ=+1	1.22 TeV/c ²
	λ=-1	1.10 TeV/c ²
HLZ	n=2	1.56 TeV/c2
	n=3	1.61 TeV/c2
	n=4	1.36 TeV/c2
	n=5	1.23 TeV/c2
	n=6	1.14 TeV/c2
	n=7	1.08 TeV/c2

More Models, More Channels

10

- Tevatron is the high energy frontier.
 - Best place to search for massive extra gauge bosons and extra spatial dimensions.
- Dilepton/Diphoton channels provide clean signal and low background.
- CDF and D0 has been pioneering the searches.
 - No evidence for new physics yet.
 - Data consistent with Standard Model.
- Many searches with more data are underway.
 - We have 1 fb-1 on the tape!
 - http://www-cdf.fnal.gov/physics/exotic/exotic.html
 - http://www-d0.fnal.gov/Run2Physics/WWW/results/np.htm

BACKUP

- General Purpose 4π detectors.
- Central solenoid and silicon vertex tracker.

Generic Z' Model

Four classes of solutions satisfy the constraints.

- Within a class, Z' is specified by three parameters.
 - M_Z[,] (Z' mass)
 - g_Z (strength)
 - x (coupling)

	b-xL	q+xu	10+x5	d-xu
$q_L = (u_L, d_L)$	+1/3	+1/3	+1/3	0
u _R	+1/3	+x/3	-1/3	-x/3
d _R	+1/3	(2-x)/3	-x/3	+1/3
$I_L = (e_L, v_L)$	-X	-1	+x/3	(x-1)/3
e _R	-X	-(2+x)/3	-1/3	+x/3

- E6 motivated models can be obtained.
 - d-xu gives Z_I with x=0
 - 10+x5 gives Zη (x=-0.5), Zψ (x=1), Zχ (x=-3).

Generic Z' Search at CDF (ee)

- CLs method for setting limits.
- Line : LEP exclusion.
- Colored : CDF Run II exclusion.
- Limits for the E6 Z's

	95% CL Limit
Zı	625 GeV/c ²
Ζη	720 GeV/c ²
Zψ	690 GeV/c ²
Ζχ	715 GeV/c ²

 $q + xu \mod s$

Expected Z' Exclusion

CDF Run II Preliminary (448 pb⁻¹)

່ ບ

GeV ອກກ

Ma

Ñ

Carena, Daleo, Dobrescu, Tait, PRD 70, 093009 (2004)

0 5 10

g_= 0.01

g_ = 0.03

Z' Couplings X

600

500

400

-10

_____ g_= 0.05

_____ g_= 0.10

-5

0 5

Measured Z' Exclusion

Drell-Yan Production at the Tevatron

(GeV/c²) 8

Wass (00

Ñ

600

500

400

300

200

-10 -5

Jedong Lee

15

ee and $\mu\mu$ channels at CDF

- Integrated luminosity 200 pb-1.
- Search based upon the acceptances for general spin-0,1,2 particles.
- ---- σ*Br(X→µµ) 95% CL limit ----- σ*Br(X→ee) 95% CL limit
 - ee, μμ combined limit

$Z' \rightarrow \tau \tau \text{ at CDF}$

- Integrated luminosity 195 pb-1.
- Selection
 - Two central τ pairs.
 - At least one hadronic and leptonic decays.
- Consistent with Background.
- 95% CL limit 394 GeV.

Effective ADD Models

- Three ways to formulize ADD model.
 - GRW
 - No dependence on the sign of interference or the number of extra demensions (n).
 - Hewett
 - Distinguishes constructive/destructive interferences.
 - HLZ
 - Sign of interference fixed, n-dependence is accounted for.

Dilepton production cross section:

$$\frac{d^2\sigma}{dMd\cos\theta^*} = f_{\rm SM} + f_{\rm int}\eta_{\rm G} + f_{\rm KK}\eta_{\rm G}^2$$

- Extra dimension effect: $\eta_{\rm G} = F / M_{\rm S}^4$
- Different formalisms for F: F = 1(GRW)

$$F = \pm \frac{2}{\pi} (\text{Hewett})$$
$$F = \begin{cases} \log\left(\frac{M_s^4}{M^2}\right), n = 2\\ \frac{2}{n-2}, n > 2 \end{cases} (\text{HLZ})$$

Diphoton RS Graviton Search

