

Search for $B_{\ensuremath{\mathcal{S}}}$ Oscillations at CDF

XVII Particles and Nuclei International Conference

Santa Fe, NM, October 2005

Stephanie Menzemer Massachusetts Institute of Technology

for the CDF II collaboration

Motivation

- Neutral B mesons flavor-oscillate
- Measure fundamental SM parameters

$$\Delta m_s = \frac{G_F^2 m_W^2 \eta S(m_t^2/m_W^2)}{6\pi^2} m_{B_s} f_{B_s}^2 B_{B_s} |V_{ts}^* V_{tb}|^2$$

• Hadronic uncertainties cancel in ratio

$$\frac{\Delta m_s}{\Delta m_d} = \frac{m_{B_s}}{m_{B_d}} \xi^2 \frac{|V_{ts}|}{|V_{td}|}$$

Improved lattice computation: $\xi = 1.21 \pm 0.022^{+0.035}_{-0.014}$

- Prerequiste for timed dependent CPV
- New Physics may have sizeable effect

- 2) Proper time measurement ct, understanding of σ_{ct} crucial!
- 3) Flavor tagging, main issue at hadron colliders (calibrate opposite side taggers on B_d sample)
- 4) Measure time-dependent asymmetry:

$$\mathcal{A}(t) \equiv \frac{N(t)_{mixed} - N(t)_{unmixed}}{N(t)_{mixed} + N(t)_{unmixed}} = \mathcal{D}\cos(\Delta m_s t), \quad \mathcal{D} = 1 - 2P_{mistag}$$

Hadronic B_s Candidates

$B_s \to D_s \pi$, where $D_s \to \Phi \pi, K^*K, 3\pi$ $B_s \to D_s 3\pi$, where $D_s \to \Phi \pi, K^*K$

About 1.100 fully reconstructed B_s candidates available

Semileptonic B_s Candidates

 $B_s \rightarrow \ell D_s X$, where $D_s \rightarrow \phi \pi, K^* K, 3\pi$

about 16.800 reconstructed $B_s \rightarrow \ell D_s X$ candidates

Higher statistics but worse ct resolution compared to hadronics $ct = \frac{L_{xy}}{\gamma\beta}; \gamma\beta = \frac{p_T(B)}{M(B)} = \frac{p_T(\ell D)}{M(B)} * 1/K$ (K from MC); $\sigma_{ct} = (\frac{\sigma_{L_{xy}}}{\gamma\beta}) \oplus (\frac{\sigma_{\gamma\beta}}{\gamma\beta}) * ct$

Low ct candidates have better resolution but worse S/B

– p.5/2

Lifetime Measurement

Bias in *ct* due to trigger cuts (in hadronic & semileptonic decays):

- two displaced trigger tracks
- turnon $d_0 \ge 120 \ \mu \text{m}$
- trunoff: $d_0 \leq 1 \text{ mm}$
- selection increase bias

Adjust probability density: $\rho(t) = N(e^{t/\tau} \times G(\sigma_{ct}))\epsilon(t)$

The bias cancels for mixing!

For semileptonic decays, correct for missing momentum

- p.6/2

B_s Lifetime

Lifetime fit within narrow mass range (reject background)

Measurement not yet complete, only statistical uncertainties Combined B_s lifetime in hadronic modes consistent with PDG value

ct Resolution

mixing sensitivity:
$$S = \sqrt{\frac{N_S \epsilon D^2}{2}} \exp(-\frac{(\Delta m_s \sigma_{ct})^2}{2}) \sqrt{\frac{N_S}{N_S + N_B}}$$

The proper decay length resolution is the limiting factor at high Δm_s

 σ_{ct} determined from high statistics calibration data sample!

Study dependences on several variables: isolation, vertex fit χ^2,\ldots

 $B_s \to D_s(\Phi \pi) \pi$

Mode	$<\sigma(ct)>[\mu\mathrm{m}]$
$B_s \to D_s(3)\pi$	30
$B_s \to \ell D_s X$	50*

* not include <k-factor> = 0.85

 B_d Mixing

Proof of principle and calibration of tagger performance

- For setting limit, knowledge of tagger performance is crucial \rightarrow measure tagging dilution in kinematically similar B^0/B^+ samples
- Δm_d and Δm_s fits are very complex, test fitter framework
- Study common backgrounds on high statistic B^0 modes

Semileptonic modes:

 $\Delta m_d = 0.511 \pm 0.020 \text{(stat)} \pm 0.014 \text{(sys) ps}^{-1};$ total $\epsilon D^2(OST)$: $1.55 \pm 0.08 \text{(stat)} \pm 0.03 \text{(sys)} \%$

Hadronic modes:

 $\Delta m_d = 0.536 \pm 0.028 \text{(stat)} \pm 0.006 \text{(sys)} \text{ ps}^{-1};$

total $\epsilon D^2(OST)$: 1.55 ± 0.16 (stat) ± 0.05 (sys) %

Amplitude Scan Method

- introduce amplitude A to the unbinned likelihood fit $\mathcal{L} \sim \frac{1 \pm \mathbf{A} \cdot D \cdot \cos(\Delta m_s t)}{2}$
- fit for A for each Δm_s hypothesis
- record A and σ_A at each value

- Signal ⇔ unit amplitude, else A consistent with 0
- exclude Δm_s @ 95% CL for A+1.645 $\sigma_A < 1$

A and σ_A are correlated, systematics need to be evaluated with hundreds of toy MC experiments for each Δm_s value.

Semileptonic Modes

Hadronic Modes

Measurements is dominated by statistics

With increase in statistics leading systematics will go down

Results on Δm_s

Semileptonic modes

Sensitivity: 10.4 ps^{-1} 95% CL Limit: 6.7 ps^{-1}

Hadronic modes

Sensitivity: 9.8 ps^{-1} 95% CL Limit: 0.0 ps^{-1}

Sensitivity is fading out rapidly

Uncertainties are smooth

Combined CDF Result

Comb. CDF result

Sensitivity: 13.0 ps^{-1} 95% CL Limit: 8.6 ps^{-1}

Comb. CDF + World average

(hand-made ...)

Sensitivity: 19.6 ps^{-1} 95% CL Limit: 16.6 ps^{-1}

This measurement has significant impact on the world average!

Coming Improvements

- Additional data (×2 luminosity already on tape)
- Same Side Kaon Tagging
- Additional trigger path
- Add satellites in hadronic modes
- Reoptimize event selection (NN)
- $m(\ell D)$ dependent k-factor binning
- Combined opposite side taggers
- Better understanding of *ct* resolution

Long term projections Δm_s measurement

Projections based on winter results

Many of them are doable on few months time scale!

- Δm_s mixing analysis has been performed in hadronic & semileptonic modes
- Combined results yield a sensitivity of 13.0 ps^{-1} and 95% CL lower limit of 8.6 ps^{-1}
- We have a significant impact on the world average!
- Large room for further improvement, many people are working very hard to get that measurement done
- The analysis is at an exciting stage!

- Backup -

• Large production rates

 $\sigma(p\bar{p} \rightarrow bX, |y| < 0.6) \approx 18\mu b$ 10^3 higher than at $\Upsilon(4S)$

- Heavy and excited B states currently uniquely at Tevatron: $B_s, B_c, \Lambda_b, \Xi_b, B^{**}, B_s^{**}, ...$
- But QCD background is 10³ higher than signal Triggers are critical.
- Event signature polluted by many fragmentation tracks;
 High precision vertex tracker + dedicated reconstruction algorithms needed

Trigger signatures: lepton (e, μ) and displaced tracks

- B decays to $J/\Psi \rightarrow \mu^+ \mu^- \qquad \Rightarrow$ Di-Muon Trigger
 - + muon provides easy trigger
 - small branching fraction
- Semi-leptonic B decays
 - + large branching rations (\approx 20%)
 - missing neutrino
- Fully hadronic B decays
 - + pprox 80% of branching fraction
 - requires displaced track trigger

⇒ Lepton Trigger,+ Displaced Track

B-Triggers

B Flavor Tagging

Opposite Side Tagging:

• Jet-Charge-Tagging:

sign of the weighted average charge of opposite B-Jet high efficiency & low dilution

• Soft-Lepton-Tagging:

identify soft lepton (e, μ) from semileptonic decay of opposite B: $b \rightarrow l^- X$ (BR $\approx 20\%$), low efficiency but high dilution

• Kaon-Tagging:

due to $b \rightarrow c \rightarrow s$ it is more likely that a \overline{B} meson contains a K^- than a K^+ in the final state (not implemented at CDF)

Same Side Tagging:

• $B_{s/d}$ is likely to be accompanied close by a K^+/π^+ (ongoing effort but not used in current analysis)

Same Side Tagging

some of the possible species of particles produced in the fragmentation of a b quark to a B meson.

SSKT: Work in Progress

- There is no straight forward way to measure the tagger dilution on data unless we observe mixing
- But we have to know the dilution to set a limit

Have to rely on SSKT Monte Carlo predictions

Tuning is in progress!

Improved Tagging

Improved JQT + larger statistics for B^0 calibration sample

mode	ϵD^2 winter 05	ϵD^2 fall 05
hadronic	1.21%	1.55%
semil.	1.45%	1.55%

Additional decay modes

- $B_s \to D_s 3\pi, D_s \to \Phi \pi$
- $B_s \to D_s 3\pi, D_s \to K^* K$

 $900 \rightarrow$ 1.100 had. candidates

Improved ct resolution

- Event-by-event primary vertex instead of average beamline;
- Add L00
- Better understanding of σ_{ct}

+15% (in hadronic modes), +3% (in semileptonic modes)

Semileptonics in TTT instead of ℓSVT

- lower lepton momentum
- \bullet about 2 \times higher yields but higher background

Winter Results

Semileptonic modes

Sensitivity: 7.4 ps^{-1} 95% CL Limit: 7.7 ps^{-1}

Hadronic modes

Sensitivity: 0.4 ps^{-1} 95% CL Limit: 0.0 ps^{-1}

Combined CDF Results

Comb. CDF result, winter 2005

Sensitivity: 8.4 ps^{-1} 95% CL Limit: 7.9 ps^{-1} Comb. CDF result, fall 2005

Sensitivity: 13.0 ps^{-1} 95% CL Limit: 8.6 ps^{-1}

It's the same data!