

Top Quark Production at 1.96 TeV Jason Nielsen (Lawrence Berkeley National Laboratory)

for the CDF and DZero Collaborations

The Lure of Top Quark Physics

SUSY particles coupling to top

Production cross section is sensitive to new physics in production and decay

• Also an important background to discovery physics at future colliders

Top Quark Pair Production at the Tevatron

Cross section increases \approx 30% with Tevatron \sqrt{s} increase to 1.96 TeV

Top Quark Decay and Event Signatures

Tagging Tools: Vertexing and Soft Muons

B hadrons in top signal events

Top Pair Production Data Samples

Define samples counting leptons and/or jets with energies above 20 GeV Establish component contributions to samples

Optimized event selections for top physics and new physics

In both cases, the sample composition is important
➢ Check background prediction in regions with no top events
➢ Also testing for non-SM effects
➢ Retain high efficiency for top in expected signal regions

Event count per jet bin Dilepton entries/jet bin CDF II Preliminary 200 pb¹ WW + WZ + ZZ + Drell-Yan + fakes + tτ̄ (σ_{SM} = 6.7 pb) 40 30 20 10 0 N _{jet} ≥ **2** 0

Demonstrate good understanding of control regions and see clear excess from top in signal region.

Measurements in Dilepton (e,µ) Sample

2 lepton + \geq 2 jets + missing E_T sample is small but very clean for top signal

$$\sigma_{t\bar{t}} = 14.3^{+5.1}_{-4.3} \text{ (stat) } ^{+2.6}_{-1.9} \text{ (syst)} \pm 0.9 \text{ (lumi) pb}$$

Consistent cross sections for all lepton types (large stat. uncertainties)J. NielsenRencontres de Moriond QCD, Mar. 2005

Top Dilepton Sample Composition

Cross section requires careful study of background contributions ➤ Ready for comparison of kinematic distributions in the sample ➤ This larger sample includes events with lepton + isolated track

 $\sigma_{t\bar{t}} = 7.0^{+2.4}_{-2.1} \text{ (stat) } ^{+1.7}_{-1.2} \text{ (syst) pb}$

Enhanced Analyses in Dilepton Channels

-		Reduce b	ackground in eu channel with b-
Expected Sample	N _{jets} ≥2	After tagging	
Тор	4.58±0.09	2.70±0.09	DZero Preliminary (158 pb ⁻¹)
WW	0.46±0.03	0.008±0.002	
Ζ_ττ	0.6±0.1	0.017±0.007	5 observed events with 0.04 bkgd.
Ζ_μμ	0.10±0.04	<0.005	
QCD, W+j	0.33±0.04	0.011±0.002	
Total	6.1±0.2	2.74±0.09	$\sigma = 11.1_{-4.3} \pm 1.4 \pm 1.7$ (lum1) pb
Or loosen cuts to increase number of signal events			

πмс Number of Jets

 $\sigma = 8.6^{+2.5}_{-2.4} \pm 1.1 \,\mathrm{pb}$

hannel with b-

Fit distributions for physics backgrounds and find 10 top dilepton events in $ee,e\mu,\mu\mu$

Measurements in Lepton + Jets Channel

High- p_T isolated electron, muon with missing E_T and $\geq 4(3)$ jets (2 are b-jets)

Largest systematic uncertainty from b-tagging efficiency measurement

Cross Section Results using B-Tagging

Estimate backgrounds in the lepton + jets sample from first principles:
Using data as much as possible (fake W bosons, fake b-tags)

Most precise measurement at Run 2 is in b-tagged lepton+jets sample $= -2 \pm 1.2$ ($= -2 \pm 1.2$) ± 0.0 ($= -2 \pm 1.2$)

$$\sigma_{t\bar{t}} = 5.6^{+1.2}_{-1.1} \text{ (stat) } ^{+0.9}_{-0.6} \text{ (syst)} \text{pb}_{\text{(CDF sec. vtx.)}}$$

Kinematic Analyses using Lepton + Jets

Best result w/o b-tag (CDF ANN): $\sigma_{t\bar{t}} = 6.7 \pm 1.1 \pm 1.6 ~{
m pb}$

Fit to data distribution to extract top pair signal fraction (15-20%)

- Large uncertainty for energy scale when fitting jet energies
- In future, can apply b-tagging before performing fit

Results from All-Hadronic Jet Channels

Expect ≥6 jets when W decay hadronically

$$\sigma = 7.8 \pm 2.5 \text{ (stat.)}_{-2.3}^{+4.7} \text{ (syst.) pb}$$

All-Jets Channel Neural Network Analysis

Challenge to separate top from QCD multijet production

Neural Network 2 output

Kinematic ANN

- total transverse energy H_{T}
- aplanarity, sphericity

Variables in final selection ANN are sensitive to high mass objects:output from first neural networkdijet masses, top pair mass

Fit for 220 evts, estimate 186 are bkgd (large error from jet energy scale)

 $\sigma = 7.7^{+3.4}_{-3.3} (\text{stat})^{+4.7}_{-3.8} (\text{syst}) \pm 0.5 (\text{lumi}) \text{ pb}$

Rencontres de Moriond QCD, Mar. 2005

Summary of All Tevatron Results

DØ Run II Preliminary

Comparison: Theory vs. Experiment

Summary

- Top pair production has many experimental signatures
 - We test as many as possible with different measurements
 - All seem consistent with QCD calculations at NLL
- Tevatron delivering high luminosity
- Working on reducing systematic experimental uncertainties (goal is 10% with 10x more data)
 - B-tagging efficiency measurement
 - Jet energy measurements (in kinematic analyses)
 - Improved modeling of W+jets processes
- Eagerly anticipating 4x statistics later this year
 - Test QCD prediction more precisely
 - Look for signs of physics beyond SM in the top sample

Tevatron Run 2 at Fermilab

CDF II Detector at the Tevatron

Continuing work to incorporate upgraded detectors in data analysisAccurate detector simulation vital to precision physics measurements

DZero Detector at the Tevatron

W/Z Cross Section Cross-Checks

Validate luminosity measurement, lepton identification and measurements

Also provides a link back to connect with Run 1 cross section results