New Diffractive Results from the Tevatron

Michele Gallinaro The Rockefeller University (CDF collaboration)

✓ Introduction

Exclusive production (dijets, χ_c, γγ,...)
 Diffractive structure function
 Flavor dependence (W/Z)

Hadronic Diffraction

Small transferred momentum

Elastic and diffractive processes: leading hadron emitted at small angle

the exchange ("pomeron") is colorless ⇒ rapidity gap

Diffractive processes

600

200

∑⁶⁰⁰ 9)400

E/dy

⇒gaps are exponentially suppressed

colorless exchange $\Delta y \sim \ln 1/\xi$ (ξ =momentum loss fraction) \Rightarrow rapidity gaps survive (Δ y>3)

 \Rightarrow large rapidity gaps are signatures for diffraction

Michele Gallinaro - "New diffractive results from the Tevatron" - Moriond - Mar. 2005

5

5

0

Run II detectors

Exclusive Higgs at LHC

>hard gg→H process
>color neutral exchange
⇒ rapidity gap signature
>clean process
>M_H= "missing mass" = (s ξ₁ ξ₂)^{1/2}

<u>Theory predictions</u>: ⇒σ_H(LHC)~3 fb, signal/bkg~3 (if ΔM_{miss}=1 GeV) Khoze, Martin, Ryskin <u>Bialas, Landshoff</u>: PLB 256,540 (1991) <u>Boonekamp, Peschanski, Royon:</u> PRL 87, 251806(2001) <u>Khoze, Martin, Ryskin</u>: Eur. Phys. J. C23, 311 (2002); C25,391 (2002);C26, 229 (2002)

Attractive Higgs discovery channel at the LHC

Exclusive Dijets at Tevatron

similar to exclusive Higgsmuch larger cross section

...not observed yet...

<u>Goal:</u>

find exclusive dijet production (if it exists)
measure cross section/upper limit
calibrate Higgs predictions at LHC

Exclusive Dijets in Run I

theory expectns ~1 nb (Run I kinematics)

Dijet Mass Fraction

Exclusive Dijet Events ?

Limits on Exclusive production

Heavy flavor exclusive dijets

Theory: $J_Z=0$ spin selection rule $gg \rightarrow gg$ dominant contribution at LO $gg \rightarrow q\overline{q}$ suppressed when $M_{ii} \gg m_q$

Experimental method: normalize R_{jj} for $q\overline{q}$ to R_{jj} for all jets \Rightarrow look for event suppression at large R_{jj}

<u>Pros:</u> many systematics cancel out good HF quarks id small g mistag O(1%)

<u>Cons:</u> heavy quark mass: contribution from exclusive b/c

HF tagged jet fraction

 $R_{btag}(>0.7)/R_{btag}(<0.4)=0.59 \pm 0.33 (stat) \pm 0.23 (syst)$

Future plans

Increase data sample: ⇒new exclusive b-jet trigger >~ 80% efficiency for SecVtx tagged jets >expect 900 tagged b-jets in 300 pb⁻¹ at L=3x10³¹cm⁻²s⁻¹

 \Rightarrow how does $R_{btag}(>0.7) / R_{btag}(<0.4)$ look like in $b\overline{b}$ events?

Diffractive dijets

ratio of SD/ND dijet event rates

 slope and normalization agree with Run I result

•no ξ dependence observed 0.03< ξ <0.1 \Rightarrow confirms Run I results

within 100 < Q² < 1,600 GeV² ⇒pomeron evolves similarly to proton ²/2

Diffractive W

Study diffractive W-boson production, and the partonic structure of the Pomeron by a comparison to the diffractive di-jet production

- •Run I: 8,246 W(ev) events PRL 78 (1997), 2698
- •R_w (SD/ND)= 1.15 ± 0.51(stat) ± 0.20(syst) %

Exclusive low-mass states

$$p\bar{p} \rightarrow p\chi\bar{p}$$

 $\downarrow \qquad \qquad J/\psi \gamma \rightarrow \mu\mu\chi$
($\gamma \text{ is soft}$)
(same quantum numbers as Higgs boson)

✓ bkg from multiplicity fluctuations (under threshold) ✓ difficult to estimate noise contribution cross section <u>upper limit</u> for exclusive production $\Rightarrow \sigma_{excl} (J/\psi+\gamma) = 49 \pm 18(stat) \pm 39(syst) pb$ ~70 pb Khoze, Martin, Ryskin, Stirling Eur. Phys. J. C 35, 211 (2004)

Exclusive diphotons

 σ (gg →γγ, |η|<1, E_T>5 GeV)=40 fb ⇒ in 100 pb⁻¹ expect ~5 events

new trigger implemented

Work in progress: •estimate background •study low-pt photon ID •study efficiencies •...more data

forward detectors working well dedicated diffractive triggers

improved limits for exclusive production (dijets, χ_c)

attempted to extract signal using b-quarks new DPE b-trigger

diffractive structure functions, W/Z, etc. (gluon/quark ratio, q^2 , ξ dependence)

Proton-Antiproton Collisions

$$\sigma_{tot} = \sigma_{el} + \sigma_{in}$$

 $\sigma_{\text{in}} = \sigma_{\text{SD}} + \sigma_{\text{DD}} + \sigma_{\text{HC}}$

- ~25% of the time the proton and antiproton elastically scatter
- ~10% of the time single diffraction occurs
- ~1% of the time double diffraction occurs
- ~56% of the time a "hard" collision occurs

