Di-boson production

at the Tevatron

Outline

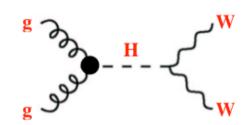
Introduction

WW cross section

•WZ cross section and WWZ couplings

•Wγ cross section and WWγ couplings

•Zγ cross section and tri-neutral couplings •Conclusions



G. De Lentdecker University of Rochester For the CDF and D0 Collaborations Moriond-EWK 2005, LaThuile, Italy, March 8, 2005

Motivations

- Non-Abelian structure of SM => triple and quartic gauge boson couplings ∃ (ZZγ & Zγγ = 0)
- Diboson production
- \Rightarrow test of Triple Gauge Couplings (WW γ , WWZ, ZZ γ , Z $\gamma\gamma$)
- Tevatron is complementary to LEP:
 - Tevatron probes different coupling combinations than LEP
 - Tevatron explores higher Ŝ
- New physics probe
- Background of numerous analyses (H->WW, SUSY, tt)
- Knowledge of diboson cross section important for many LHC analyses
- At Run I, low statistics, low significance on diboson signal

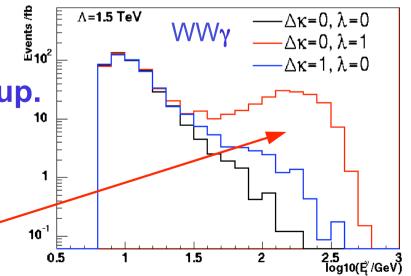
W. Z. v

W. Z. y

WWγ & WWZ Anomalous couplings AC

• All possible interactions terms (WWV; V = γ or Z) in L_{eff}: $L_{WWV} / g_{WWV} = g_V^1 (W_{\mu\nu}^{\dagger} W^{\mu} V^{\nu} - W_{\mu}^{\dagger} V_{\nu} W^{\mu\nu})$

$$+ \kappa_{\rm V} W^{\dagger}_{\mu} W_{\nu} V^{\mu\nu} + \frac{|\lambda_{\rm V}|}{M_W^2} W^{\dagger}_{\lambda\mu} W^{\mu}_{\nu} V^{\nu\lambda}$$

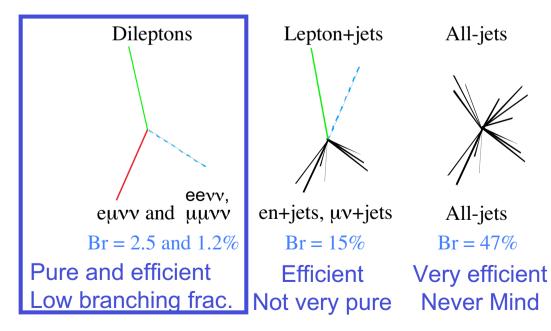

L_{eff} characterized by 5 CP conserving parameters:

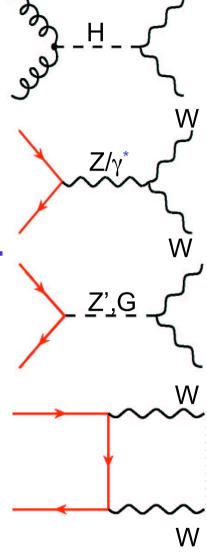
$$\lambda_z = \lambda_\gamma = 0; \ \Delta \kappa_z = \Delta \kappa_\gamma = 0 \ (\Delta \kappa = \kappa - 1) \text{ and } \Delta g_z^1 = 0 \ (\Delta g_z^1 = g_z^1 - 1)$$

• κ and λ related to magnetic dipole and electric quadrupole moments of W: $\mu_W = e(1+\kappa+\lambda) / 2M_W$

$$Q^{e}_{W} = -e(\kappa - \lambda) / M^{2}_{W}$$

- form-factor scale Λ to avoid unitarity violation
- WW to probe WWγ and WWZ coup.
- Wγ to probe WWγ coupling
- WZ to probe WWZ coupling
- AC effect: X-section increases for high E_T boson



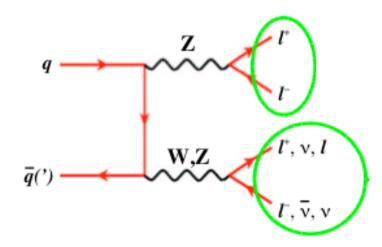

Cut definitions

- CDF and D0 use similar cuts
- W/Z selections are based on selection of high-P_T leptons
 - Z->II, W->Iv
- High-P_T leptons
 - Electron or muon with P_T>20-25 GeV/c
 - Isolated = E_T in cone R=0.4 less than 0.1*E_T(lepton)
 - Central = |η| <1 (1.1)</p>
- Neutrinos result in mis-balance of transverse energy

WW production

- Important background for Higgs searches
- Self interaction of heavy bosons (WWy/Z)
- Probe for new heavy bosons
- Large statistics at LEPII (10K evts/exp.)
- @ Run I, one result (CDF) w/. limited significance: 5 evts observed with 1.3±0.3 bkgrd.
 σ (WW) = 10.2^{+6.3}_{-5.1}(stat) ±1.6 (syst) pb

Event selection First goal: establish the signal W **Selection:** 2 isolated leptons γ*/Z **Backrounds:** Drell-Yan with "fake" E_T σ(pp->Z/γ*->ee) ~ 250 pb W+jets/γ where jet must fake a lepton ■ σ(pp->W(->ev)+≥1jet) ~ 500 pb tt (contains additional jets) σ(pp->tt-> evevbb) ~ 0.1 pb Heavy dibosons (WZ,ZZ) production


0000

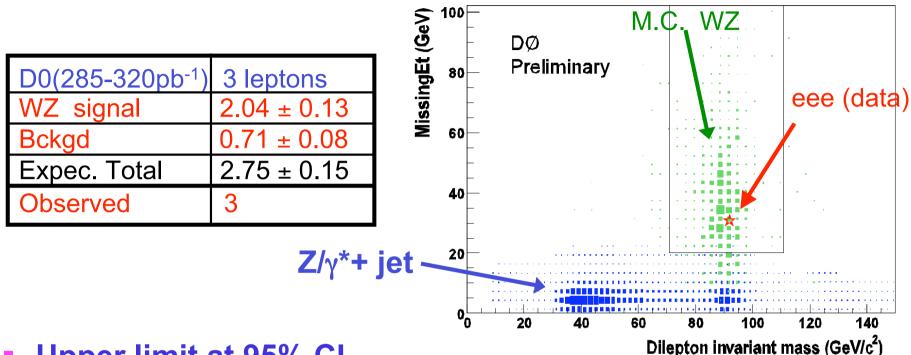
WW cross section

	D0 (224-252 pb ⁻¹)			CDF (184 pb ⁻¹)			
Process	ee	μμ	eμ	ee	μμ	eμ	
WW signal	3.42±0.05	2.10±0.05	11.10±0.10	2.6±0.3	2.5±0.3	5.1±0.6	
Total BKGD	2.30±0.21	1.95±0.41	3.81±0.17	1.9 ^{+1.3} -0.3	1.3 ^{+1.6} -0.4	1.9±0.4	
Observed	6	4	15	6	6	5	
Combined:	$\sigma(WW) =$	$= 13.8^{+4.3}_{-3.8}$ (stat	$(t.)^{+1.2}_{-0.9}(sys.)$	$\sigma(WW) = 1$	$4.6^{+5.8}_{-5.1}$ (sta	$(at.)^{+1.8}_{-3.0}(sys.)$	
± 0.9(<i>lum</i> .) pb			pb	± 0.9(<i>lum</i> .) pb			
$\sigma(\text{pp->WW->IIvv})^{\text{THEORY}}_{\text{NLO}} = 12.4 \pm 0.8 \text{ pb}$ $P(\text{background fluc.}) = 2.3^{*}10^{-7}$ $= 2.3 \times 10^{-7}$					WW		
P(background fluc.) = 2.3*10 ⁻⁷							
=> ~ 5.2 standard deviations			6	Ţ		-	
Systematics (CDF):				-	• DØ Run		
- Selection efficiency ~10%				CDF Run II			
(signal modelling ~7%)				CDF Run I − − NLO theory (WW) −			
- Backgrounds ~40% (D-Y, W+jet)			t) <mark>1</mark>				
- Luminosity : 6%			1	-	√s (TeV)	10	

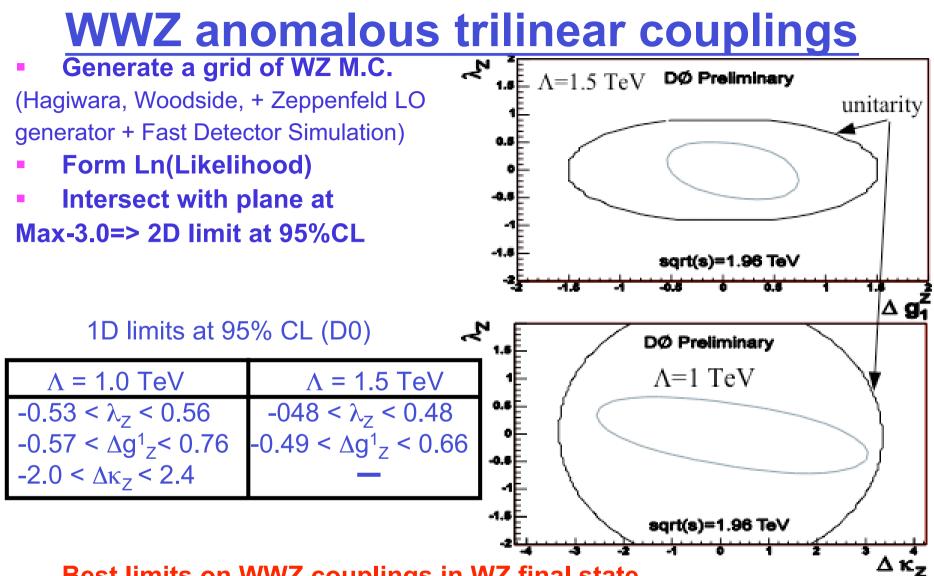
<u>WZ</u>

- Important step towards Higgs searches (significant bkgd)
- Sensitive to the WWZ coupling (and not WWγ as in WW)
- W[±]Z unavailable at e⁺e⁻ colliders => unique meas. of WWZ
- Search for trilepton signature (no other SM process)
- σ_{NLO}(WZ) ~ 4.0 pb at 1.96 TeV
- Z selection:
 - 2 high P_T leptons
 - M_{inv}(II) consistent w/ m_z
- W selection:
 - Isolated lepton + E_T
- Main background:
 - Ζ/γ*+ jet

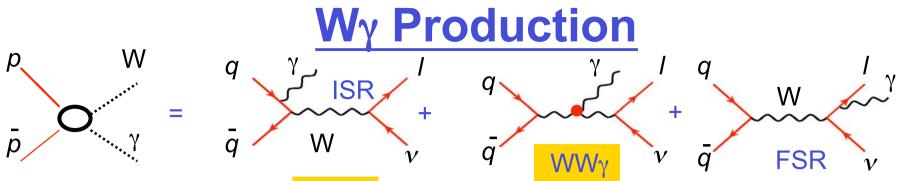
CDF WZ and ZZ x-sections


Process	4 leptons	3 leptons	2 leptons	Combined
ZZ	0.06±0.01	0.13±0.01	0.69±0.11	0.88±0.13
ZW	-	0.78±0.06	0.65±0.10	1.43±0.16
Total signal	0.06±0.01	<mark>0.91±0.07</mark>	<mark>1.34±0.21</mark>	2.31±0.29
WW	-	-	0.40±0.07	0.40±0.07
Fake	0.01±0.02	0.07±0.06	0.21±0.12	0.29±0.16
Drell-Yan	-	-	0.31±0.17	0.31±0.17
tt	-	-	0.02±0.01	0.02±0.01
Total Bkgd	0.01±0.02	0.07±0.06	0.94±0.22	1.02±0.24
Signal+Bkgd	0.07±.02	0.98±0.09	2.28±0.35	3.33±0.42
#Observed	0	0	3	3

• Upper limit at 95%CL:


σ(pp_ZZ/ZW+X) <15.2 pb @95% C.L.

 $\sigma(pp_ZZ/ZW+X)^{THEORY}_{NLO} = 5.0 \pm 0.4 \text{ pb}$

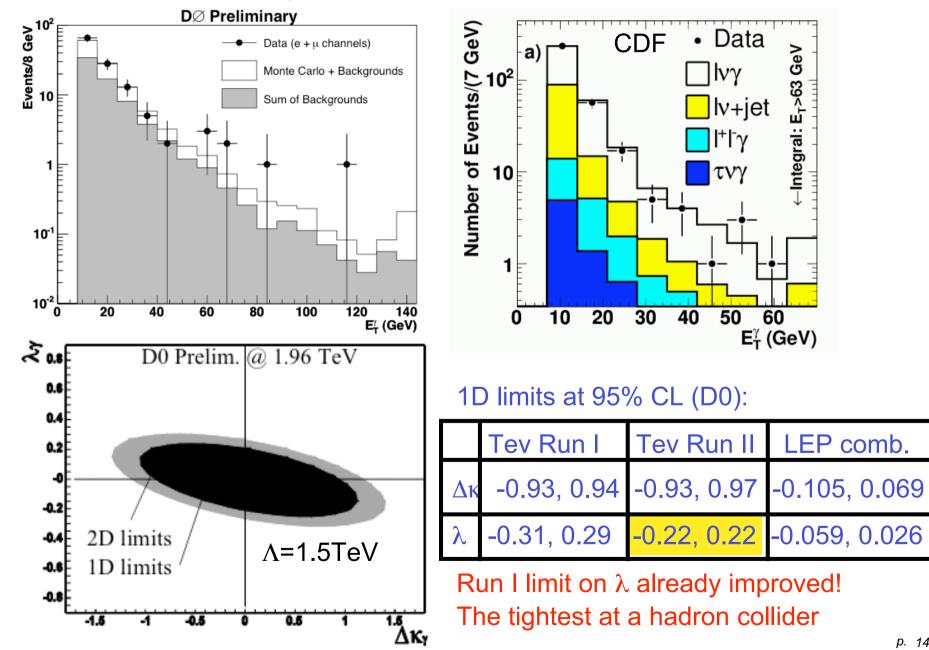

D0 WZ cross section

- Upper limit at 95% CL
 - σ(pp_ZW+X)<13.3 pb @95% C.L
- WZ cross section estimate
 - σ(pp_ZW+X) = 4.5^{+3.5}-2.6 pb
- Prob (0.71 bkgd->3 candidates) = 3.5%

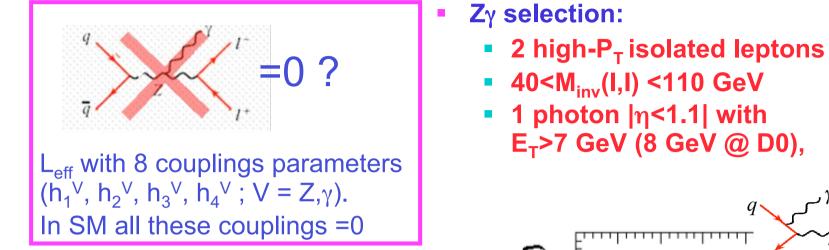
- Best limits on WWZ couplings in WZ final state
- First 2D limits in κ_z vs λ_z using WZ
- Best limits on Δg_1^z , $\Delta \kappa_z$ and λ_z from direct, model independent measur.
- D0 Run II 1D limits are x3 better than Run I

- Sensitive only to WWy coupling
- **Bkgd of Gauge Mediated Supersymmetry Breaking models**
- **W** Selection M⁽I[/], v) (GeV/c²) 180 160 140 CDF Isolated high-P_T lepton γ ID is crucial ISR 140 |η| <1, ΔR(Ι,γ)>0.7 120 WW_v 100 Effect of anomalous 80 $W_{\gamma} \rightarrow I_{\nu} \gamma MC$ couplings more **FSR** pronounced at high $M_{\tau}(W\gamma)$ 60 128 Wy $\rightarrow \mu \nu \gamma$ Candidates 195 Wy \rightarrow e v y Candidates 40 40 60 80 100 120

140


 $M_{T}(I, v)(GeV/c^{2})$

Wγ cross section

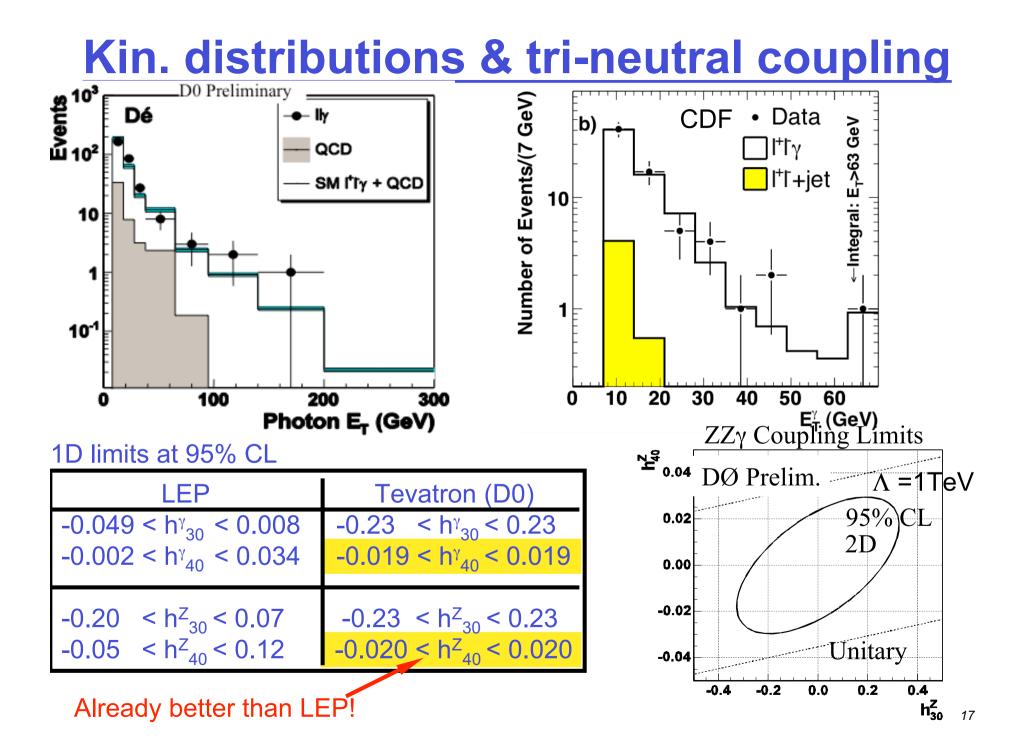

	D0		CDF	
Decay Channel	evγ	μνγ	evγ	μνγ
Lum'y (pb ⁻¹)	162 (6.5%)	134 (6.5%)	202-168 (6%)	192-175(6%)
Wγ	51.2 ± 11.5	89.7 ±13.7	126.8 ± 5.8	95.2 ± 4.9
Total Bkgrd	60.8 ± 4.5	71.3 ± 5.2	67.3 ± 18.1	47.3 ± 7.6
Sig+Bkgd	112 ± 12.3	161 ± 14.6	194.1 ± 19.1	142.5 ± 9.5
# Observed	112	161	195	128
Α*ε	2.3%	4.4%	3.3%	2.4%
σ(Wγ)*Br	13.9±2.9±1.6	15.2±2.0±1.1	19.4±2.1±2.9	16.3±2.3±1.8
Combined*:				
$\sigma(p\overline{p} \to W^{\pm}\gamma)$	$= 14.8 \pm 1.6($	$\sigma(p\overline{p} \to W^{\pm}\gamma)$	$() = 18.1 \pm 3.1 \text{p}$	
1.0	$(sys.) \pm 1.0(la)$			
SM expect: $\sigma(W\gamma) = 16.0 \pm 0.4 \text{ pb}$			SM expect: σ(V	V_{γ}) = 19.3 ± 1.4 pl

*Both experiments quote x-section integral within acceptance

WWy anomalous coupling

Ζγ production

 Z_0 (²)/**9**) (⁴⁰⁰/₂) (⁴⁰⁰/₃₅₀ CDF Main Background = Z+jet where 250 200 35 Z $\gamma \rightarrow \mu^{\dagger}\mu^{\gamma} \rho$ events jet mimic a photon (see Wγ) 36 $Z\gamma \rightarrow e^+e^-\gamma$ events 150 $Z^0 y \rightarrow I^{\dagger}I^{-} y$ 100 \sum_{0}^{N} 50 00 250 300 350 400 $m(l^{\uparrow}, l)$ (GeV/c²)

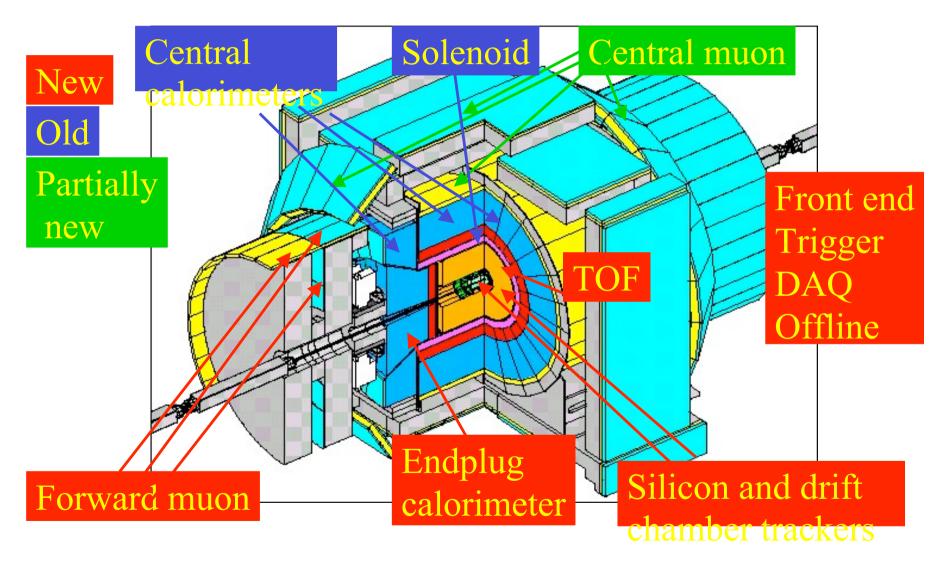

Summary:

	D)	CDF	
Decay Channel	eeγ	μμγ	eeγ	μμγ
Lum'y (pb ⁻¹⁾	324 (6.5%)	286 (6.5%)	202-168 (6%)	192-175 (6%)
SM Zγ	109 ± 7	128 ± 8	31.3 ± 1.6	33.6 ± 1.5
Total Bkgrd	23.6 ± 2.3	22.4 ± 3.0	2.8 ± 0.9	2.1 ± 0.7
Sig+Bkgrd	132.6 ± 7	150.4 ± 8	34.1 ± 1.8	35.7 ± 1.7
# Observed	138	152	36	35
Α*ε	11.3%	11.7%	3.4%	3.7%
σ∗Br(pb)	_	—	4.8±0.8±0.3	4.4±0.8±0.2

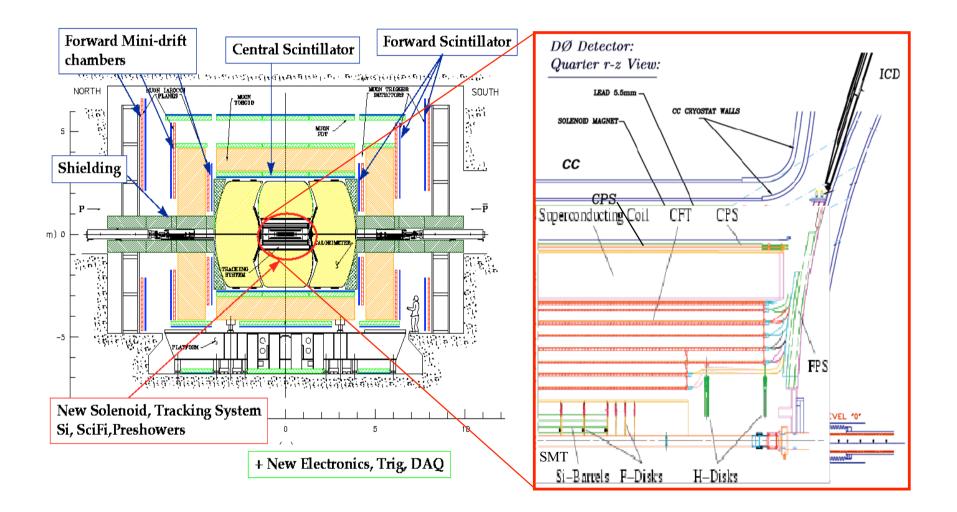
Combined:

- $\sigma(Z\gamma)^*Br(Z \rightarrow II) = 4.6 \pm 0.6 \text{ pb}(CDF)$
- σ(Zγ)*Br(Z ->II) = 4.2 ± 0.4(stat+syst) ± 0.3 (lumi) pb (D0)
- SM expectation: 4.5 ± 0.3 (pb)

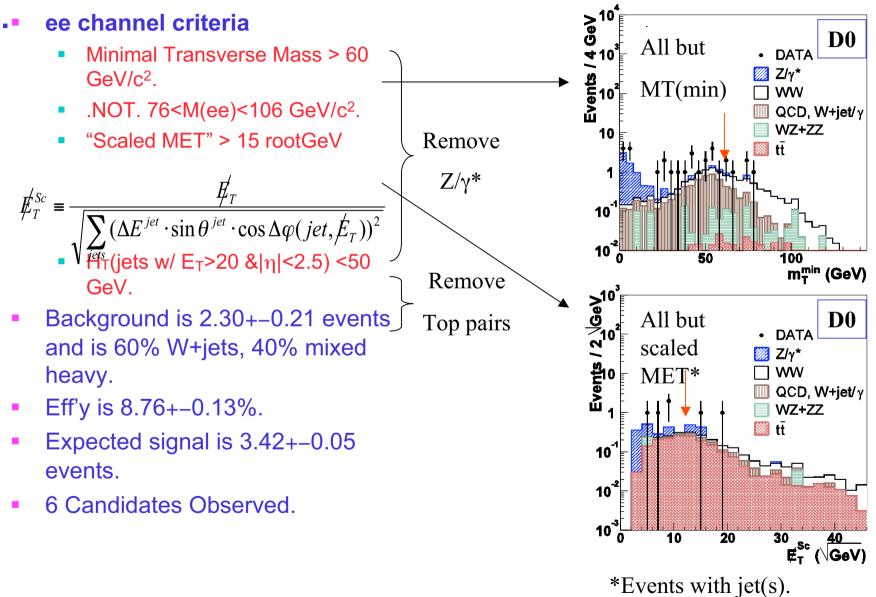
*Both experiments quote x-section integral within acceptance



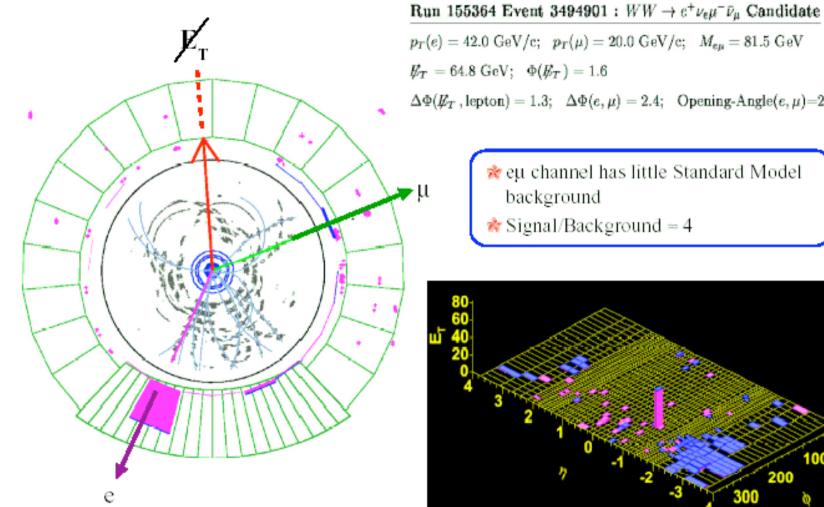
Conclusions


- Most of Run I measurements re-established and/or already improved + new Run II results:
 - Significant number of diboson candidate events
 - Very good agreement with SM
 - CDF and D0 have measured σ(WW) at 1.96 TeV using the dilepton decay channel
 - CDF and D0 have 95% CL on σ(WZ/WZ+ZZ) and D0 has first evidence of WZ production
 - D0 has tightest limit on WWZ anomalous coupling using WZ events.
 - Both CDF and D0 study the Wγ and Zγ production
 - tightest limit on WW_γ anomalous coupling at hadron collider
- More to come:
 - CDF and D0 start only exploring the potential of Tevatron Data
 - Radiation amplitude zero (WWγ AC)
 - Use jet channel WW->lvjj
 - Quartic couplings
 - • • •

Backup slides


CDF detector

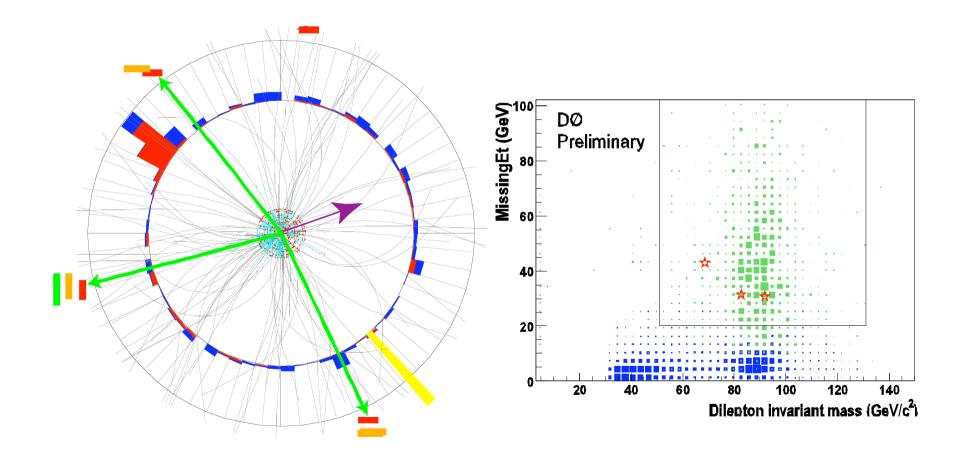
D0 detector

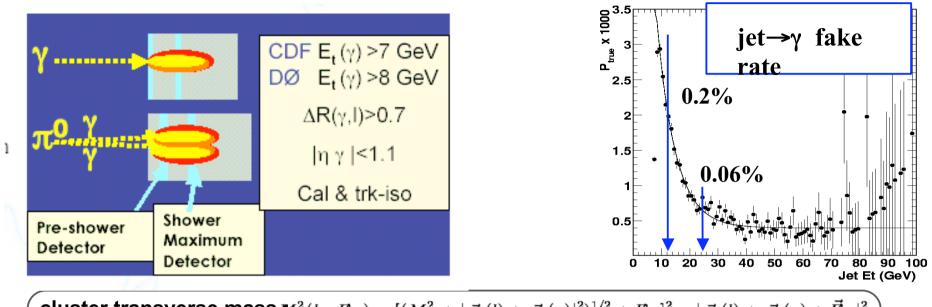


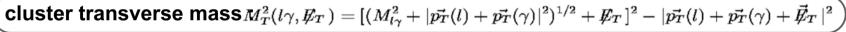
WW ->eevv Event Selection

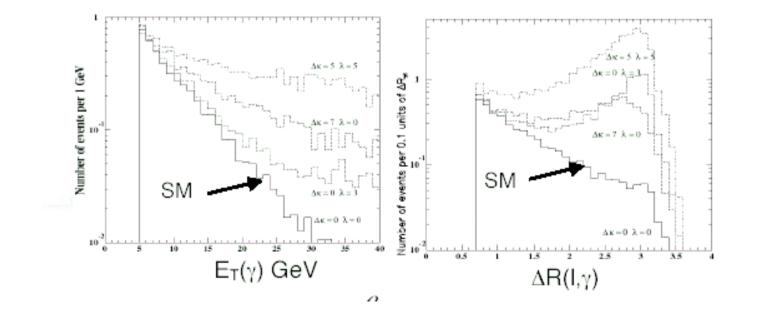
p. 22

 $\Delta \Phi(\not\!\!E_T, \text{lepton}) = 1.3; \quad \Delta \Phi(e, \mu) = 2.4; \quad \text{Opening-Angle}(e, \mu) = 2.6$

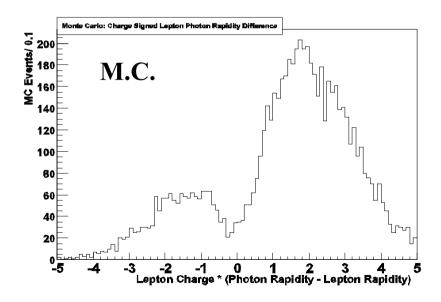

💏 eµ channel has little Standard Model

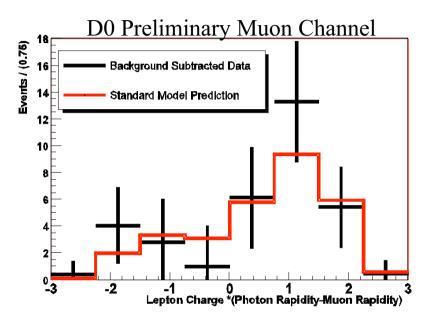

100




The 3 events

Wγ production





Wγ Radiation Amplitude Zero

- For COS(θ*), the angle between incoming quark and photon in the Wγ rest frame, = –1/3, SM has "amplitude zero".
- For events w/ M_T(cluster)>90 GeV/c². One could guess the W_γ rest frame. We use chargesigned Δη(*I*,γ)

- We plot the backgroundsubtracted muon data vs. MC Δη(/,γ) => hints of the Rad. Zero.
- It will help to extend the etacoverage of electrons and especially of photons.