b Physics at the Tevatron part I: m and $\Delta m_{d,s}$

> Masses of *b*-hadrons,
> rare decays and
> oscillation measurements at CDF and D0

Saverio D'Auria, University of Glasgow For the CDF and D0 collaborations

XL Rencontres de Moriond EW

Introduction: CDF and D0 detectors

Tevatron performances: see G. Bernardi's transparencies Central Calorimeter (E /H) Central Muon Great *b*-physics capabilities Wall Calorimeter (H) Solenoid **D0:** Plug Calorimeter (E/H) Forward Muon **Excellent muon trigger Tracking coverage** $|\eta| < 2$ **Tracking: Silicon + SciFib** Forward Mini-drift Forward Scintillator **Central Scintillator** chambers NORTH SOUTH Ast. 14: 23 Calorimeter (E) Shielding Luminosity Monitor Time of Flight Central Outer Tracker **CDF:** m) D Silicon Vertex Detector Intermediate Silicon 13:50 **Excellent p**_T **resolution**, displaced track trigger -5 \rightarrow fully hadronic decay modes H **Tracking: Silicon + Drift Chamber** New Solenoid, Tracking System dE/dx, ToF particle ID ۵ 5 10 Si, SciFi, Preshowers . .

Trigger issues

CDF, D0: $p\overline{p} @ \sqrt{s} = 1.96 TeV$ *b* Production cross section: $\sigma(p\overline{p} \rightarrow \overline{b}X) = (29.4 \pm 0.6_{(stat)} \pm 6.2_{(svs)}) \mu b$

|y| < 1 CDF submitted to PRD hep-ex/0412071

Inelastic cross section: $\approx 60 \text{ mb} \rightarrow \text{factor } 1/1000 \text{ trigger.}$

Compare with *b*-factories: σ is 10³ higher,

					_	
	σ (μb)	$L \text{ cm}^{-2} \text{ s}^{-1}$	Integrated L	<i>b</i> -events		
Tevatron	29	1.2×10^{32}	$600 \text{ pb}^{-1} \times 2$	13.8 ×10 ⁹		
KEK	0.001	1.52×10^{34}	371 fb ⁻¹	0.37×10^{9}		
BaBar	0.001	0.95×10^{34}	256 fb ⁻¹	0.25×10^{9}		
Trigger cru	icial poir	nt:			e,µ	
• 2μ from J/ ψ ,						
• soft lepton, (soft lepton+non prompt track) (Track)						
2 non-prompt tracks (CDE) P.V.						

L is pb⁻¹ (TeVatron) vs. fb⁻¹ (Y(4S))

2 non-prompt tracks (CDF)

Moriond 11/3/2005

Relevance of mass measurements

- Spectroscopy of heavy-light quark system, to complement quarkonia
- Verify detailed calculation and hypothesis (potential, NRQCD)
- Validation of Lattice QCD
- Spectroscopy of heavy-heavy mesons: quarkonia vs. B_c.

Relevance of B_c

- Only meson to have 2 spectator-model weak decays with comparable amplitudes (*b* and *c* decays). $\frac{\overline{b}}{\overline{c}}$
- Possible contamination for B_s decays
- Perfect source of flavour-tagged B_s
- Measure angle γ in $D^0 D_s$, $\overline{D}^0 D_s$ self-tagged decays [Masetti, Fleischer-Wyler, Kiselev]

Moriond 11/3/2005

С

С

h

S

b hadron masses

Moriond 11/3/2005

Tevatron best place to measure B_c mass precisely CDF: Search for fully reconstructed mode

 $B_c \rightarrow J/\psi \pi^{\pm}$

- Trigger: 2 μ 's from J/ $\psi,\,p_T>1.5~GeV/c$
- 2-body topology, reference mode $B^+ \rightarrow J/\psi K^+$
- Blind search: range: semileptonic mass $\pm 2\sigma_m$.
- Experimental issues:

lifetime, small *BR*, small σ_{prod} . expected 10-50 events, based on Run I rate.

Background:

- Prompt J/ ψ associated to random prompt track \rightarrow require lifetime
- \bullet Secondary J/ ψ with prompt track
- Secondary J/ψ with non prompt track
 - \rightarrow require good vertexing

Hypothesis test set up before opening the box.

Score function
$$\Sigma = \frac{S}{1.5 + \sqrt{B}}$$

Threshold value $\Sigma_{thr} = 3.5$ From "toy Monte Carlo", P \approx 1/1000 false positive

After box open: scan search region with binned likelihood fit: mass fixed (scanned), Gaussian width fixed (resolution), S,B fit parameters

Unbinned likelihood fit. Mass: fit parameter, width fixed.

Mass = 6287.0 ± 4.8 (stat.) ± 1.1 (syst.) MeV/c²

D0 Semi-leptonic B_c decay

- Inclusive measurement $B_c \rightarrow J/\psi \mu X$
- Same strategy, require 3^{rd} track be a μ .
- Inclusive measurement, no pointing constraint.
- No lifetime cut \Rightarrow mass and lifetime measurement
- Depends on Monte Carlo for Probability Density Function and "k-factor"
- Control sample: $\psi(2S) \ \mu \ X \rightarrow \mu \mu \ \mu \ X$ (expected low BR)
- Signal: 95±12±11 candidates,
- Significance likelihood ratio 60
- Mass = 5950 $^{+140}_{-130} \pm 340 \text{ MeV/c}^2$

30

25

20

data

signal

D0 ICHEP 04

heavy flavor background

prompt background

Studies of excited b-mesons for Same Side tagging & MC tuning Soft π from fragmentation and decay

B-hadrons mass summary

CDF/D0 Rare decays

b

μ

Mixing measurements

- Reconstruct signal(s) flavor specific (selection cuts)
- Measure decay time for each candidate
- Establish flavor (b, \overline{b}) at production (= tagging)

Mixing Asymmetry
$$A_{mix} = \frac{N_{nomix}(t) - N_{mix}(t)}{N_{nomix}(t) + N_{mix}(t)} = -D\cos(\Delta m t)$$

Need high statistics sample, well measured lifetime.

Tagging production flavor
Dilution D =
$$\frac{N_R - N_W}{N_R + N_W}$$

Efficiency $\varepsilon = \frac{N_{tag}}{N_{cand}}$
Statistics reduced by a factor εD^2 :
N tagged events = $\varepsilon D^2 N$ useful events
 $\sigma_t = \left(\frac{\sigma_{DL}}{p}\right) m_B \oplus \left(\frac{\sigma_p}{p}\right) t$
 $\sigma_t = \left(\frac{\sigma_{DL}}{p}\right) m_B \oplus \left(\frac{\sigma_{DL}}{p}\right) t$
 $\sigma_t = \left(\frac{\sigma_{DL}}{p}\right) m_B \oplus \left(\frac{\sigma_{DL}}{p}\right) t$
 $\sigma_t = \left(\frac{\sigma_{DL}}{p}\right) t$

Production Vertex

Moriond 11/3/2005

Flavor tagging

Opposite side

• Soft-Lepton tag

Flavor from the sign of the lepton (e or μ) in semileptonic decays of accompanying *b*-meson.

Source of dilution: charm semi-leptonic cascade decays, oscillation in the opposite side.

• Kaon Tag:

Sign of the kaon in cascade decay $b \rightarrow c \rightarrow s$

• Jet Charge

Sign of the momentum-weighted average charge of opposite jet.

Same side

 B_s has preferentially a K+ "close by", \underline{B}_s has a K-, B^0 has a $\pi^+,\,\underline{B}^0$ has a π^-

Flavor tagging

D0 use "any" μ for tagging, use opposite side fully reconstructed decays, semileptonic decays for high statistics

Opposite side tagging is the same as for B_s mixing: use Dilution from B_d to fix this parameter for B_s .

Δm_d measurements

Best measurement HFAG $\Delta m_d = (0.506 \pm 0.006 \pm 0.008) \text{ ps}^{-1}$

Amplitude scan

- Fourier-transform method
- Fix frequency (Δm)
- Fit for the oscillation amplitude.
- Limit at 95%: lowest value Δm_{lim} $P(A (\Delta m_{lim}) \ge 1) = 5\%$
- **Sensitivity:** lowest value of Δm with error compatible with 1 (at 5%)
- **Measurement:** (range of) amplitude(s) compatible with 1 and not compatible with 0.....value of Δm from asymmetry fit !
- Advantage: easier to combine results

Limit < world average, but this is a first step in the full analysis

Other *b***-physics results:** Penguins at Fermilab

- CP Asymmetry in $B^+ \rightarrow \phi K$ BR $(B^+ \to \varphi K) = (7.6 \pm 1.3_{(stat)} \pm 0.6_{(sys)}) \times 10^{-6}$ $A_{CP} = -0.07 \pm 0.17_{(stat)}^{+0.03}_{-0.02}(sys)$ PRL, hep-ex/0502044
- Evidence for the decay $B_s \rightarrow \phi \phi$
 - **BR** $(B_s \rightarrow \varphi \varphi) = (14^{+6}_{-5}(stat) \pm 6(sys)) \times 10^{-6}$ PRL, hep-ex/0502044
- CP Asymmetry in B \rightarrow hh (h= π^{\pm}, K^{\pm}) ICHEP'04

B_s penguin-diagram decay

Conclusions

The Tevatron can produce unique results in B Physics and confirm/complement B factories.

 $m_{u,d,s,c}$

- Best measurements of *b*-hadron masses, at 0.02% level
- CDF first evidence of a fully reconstructed B_c decay $m_{Bc} = 6287.0 \pm 4.8 \pm 1.1 \text{ MeV/c}^2$
- Run 2 confirmation of semileptonic B_c decay
- Rare decays improve limits on new Physics.

 Δm_d

- Flavour taggers: B⁰ mixing as a proof of principle.
- Amplitude scan method used for B^0

 Δm_s

- D0 first preliminary Δm_s measurement from Run 2: $\Delta m_s > 5.0 \text{ ps}^{-1}$ at 95% CL
- Γ and $\Delta\Gamma$: see next talk
- Results improve faster than \sqrt{L} : systematics and techniques.
- Including other decay modes, taggers, *data.... Moriond QCD*

Aurora Borealis at Fermilab 9th November 2004, 3 a.m. 42°N

Backup Slides

Su	mmary of c	ut values used:
1.	$p_{T}(\pi)$	> 1.8 GeV/c
2.	$L_{xy}/\sigma(L_{xy})$	> 4.4
3.	$\chi^2(3D)$	< 9.0
4.	$d_0(B_c)$	< 65 µm
5.	pointing angle	e < 0.4 radians
6.	$\chi^2_{\rm vtx}(\pi)$	< 2.6
7.	ct	$< 750 \ \mu m$

Cut	MC Efficiency	N-1 data entries	Background rejection
$L_{xy}\!/\!\sigma(L_{xy})$	42.0%	11930	96.7%
$p_{T}(\pi)$	62.3%	3043	87.1%
χ ² (3D)	80.5%	762	48.4%
Pointing angle	85.4%	768	48.8%
$\chi^2_{vtx}(\pi)$	92.7%	565	30.4%
$d_0(B_c)$	97.5%	448	12.3%
ct <	98.7%	410	4.1%

Maximized
$$\Sigma = \frac{S}{1.5 + \sqrt{B}}$$

$$\begin{split} S &= \text{number of signal events from MC} \\ B &= \text{average number of background events} \\ & (\text{data}) \text{ from whole region in a window} \\ & \pm 2\text{-}\sigma_{M} \text{ wide (60.4 MeV/c^{2}).} \end{split}$$

CDF Partially reconstructed hadronic B_c

No pointing cuts Relax vertex chi2

D0 combined taggers, semileptonic decays, 250 pb⁻¹: $\Delta m_d = 0.456 \pm 0.034 \text{ (stat.)} \pm 0.024 \text{ (syst.) ps}^{-1}$ D0 combined opposite side taggers, semileptonic decays, 460 pb⁻¹: $\Delta m_d = 0.558 \pm 0.048 \text{ (stat.)} \pm x.xxx \text{ (syst.) ps}^{-1}$

CDF combined opposite side taggers, semileptonic decays, 355 pb⁻¹ : $\Delta m_d = 0.497 \pm 0.028 \text{ (stat)} \pm 0.015 \text{ (syst.) ps}^{-1}$ CDF combined opposide side taggers, fully reco. decays, 355 pb⁻¹ : $\Delta m_d = 0.503 \pm 0.063 \text{ (stat)} \pm 0.015 \text{ (syst.) ps}^{-1}$

Tagger	$\sqrt{<\mathcal{D}_{pred}^2>}(\%)$	$\varepsilon(\%)$	Scale factor (%)	\mathcal{ED}^2 (%)
SMT	35.94	5.03 ± 0.06	$92.6 \pm 3.9 \pm 2.8$	$0.557 \pm 0.047 \pm 0.034$
SET	29.41	3.53 ± 0.05	$98.0 \pm 5.6 \pm 2.9$	$0.293 \pm 0.033 \pm 0.017$
JVX	16.86	9.81 ± 0.09	97.1 ± 6.4 ± 3.8	$0.263 \pm 0.035 \pm 0.021$
JJP	11.45	14.00 ± 0.10	$90.3 \pm 7.9 \pm 4.6$	$0.150 \pm 0.026 \pm 0.015$
JPT	5.08	52.03 ± 0.10	$108.2 \pm 9.3 \pm 8.7$	$0.157 \pm 0.027 \pm 0.025$
Total		84.4 ± 0.18	-	1.429 ± 0.093

Mixing and CKM

- $\Delta m_{\rm s}$ time independent CP violation in Bs (g)
- $\Delta m_{\rm s}$ / $\Delta m_{\rm d}$ well theoretically understood
- $\Delta m_{\rm s} / \Delta m_{\rm d}$ sensitive to new Physics

 B_s oscillations: $\Delta m_s, \Delta \Gamma_s$