Electroweak Measurements at CDF

I N 2 P 3

INSTITUT NATIONAL DE PHYSIQUE NUCLÉAIRE

LPNHE- Universite Paris VI "Pierre et Marie Curie" (Paris, France)

A. Sidoti

For the CDF Collaboration

World Vear of PHYSICE 2005

UNIVERSITE

DEBRES MARIE CURIE

Research Training Networks

Lake Louise Winter Institute (Canada) February 20-26, 2005

Why Electroweak Measurements?

 Precise Electroweak predictions Challenge for Electroweak physics measurement Constrains the Standard Model OR >Appearance of Physics Beyond SM •Also crucial as input for LHC physics program: Input to Parton Distribution Functions Some Tevatron signals will be LHC background •After LEP era stepping into Tevatron era: N(Z)@Tevatron > N(W)@LEP

Production Processes at Tevatron

	თ(pb)	(Hz)	Evts/Week
bb	~ 10 ⁸	~104	6.10 ⁹
$W \rightarrow ev_e$	~2700	~0.3	~2.105
Z→ee	~250	~0.03	~2.104
Wγ→ e ∨γ	~20	~0.02	~10 ³
WW	~10	~ 10⁻³	600
Ζ <u>γ</u> → e νγ	~4	~4.10-4	240
tt	~6	~6.10-4	360

Yield $\sim 10^4$ Ws , $\sim 10^3$ Zs

Outline:

- •W and Z cross sections
- •Asymmetries (W and Z)
- Diboson production
- •W mass measurement

Rate @L=10³²cm⁻²s⁻¹

W/Z Gauge Bosons and Event Topology

At hadron colliders Use clean leptonic decays

e'

Inclusive W/Z Cross Sections

 $\sigma(pp \rightarrow Z) \times BF(Z \rightarrow II)_{Th,NNLO} = 251.3 \pm 5.0 pb$ Good agreement with NNLO •Systematics limited measurement •Uncertainties: Luminosity (6%) PDFs(2%)

 $\sigma(pp \rightarrow W) xBF(W \rightarrow Iv)_{Th,NNLO} = 2687 \pm 54 pb$

20 Years of W and Z at hadronic colliders

Indirect W Width Measurements

Checking internal consistency of SM with direct $\Gamma(W)$ measurement

R: cross section measurement ratio:

R= <u>σ.BF(W->lv_l)</u> σ.BF(Z->l+l-)

Many systematic uncertainties cancel out(Luminosity)

$$R = \frac{\sigma(pp-W)}{\sigma(pp-Z)} \Gamma(Z) \Gamma(W-V_{I_{v_{I}}})$$

Indirect W Width measurement

Channel	Γ (W)(MeV)	∫Ldt(pb ⁻¹)
e+µ	2079±41	72
μ	2056±44	194
PDG	2118±41	
SM Pred.	2092.1±2.5	

Z Asymmetry

 A_{FB} arises from Axial and Vector couplings Z and γ interference term

$$\frac{d\sigma}{d\cos\theta} = A(1+\cos^2\theta) + B\cos\theta$$

$$A_{FB} = \frac{d\sigma(\cos\theta > 0) - d\sigma(\cos\theta < 0)}{d\sigma(\cos\theta > 0) + d\sigma(\cos\theta < 0)}$$

$$3B$$

 $A_{FB} = \frac{1}{8A}$ A_{FB} ∫Ldt=72 pb⁻¹ 0.8 0.6 0.4 $\chi^2 = 15.7/15$ 0.2 0 Z/γ* → e⁺e MC -0.2 theoretica calculations -0.4 Statistical -0.6 Total 60 100 40 200 300 600 M_{ee} (GeV/c

Measurement limited by statistics
Complementary to LEP measurement far from the Z pole

Sensitivity to heavy neutral bosons (Z')

Extract quark, electron couplings and sin²θ_w^{Eff}

W Asymmetry

Sensitivity to PDF distributions(u/d ratio): u carries more momentum than d

 $A(y_W) = \frac{d\sigma(W^+)/dy - d\sigma(W^-)/dy}{d\sigma(W^+)/dy + d\sigma(W^-)/dy}$

Observable quantity is lepton rapidity:

Convolution of W asymmetry and V-A interactions Charge ID at high |η| is crucial: Use of calorimeter seeded tracks

Events(e+μ)	Back(%)	$\sigma(Z\gamma)\bullet B(Z\rightarrow II) (pb)$	σ x Β _(Th) (pb)
36+35	7.8e,5.8 μ	$4.6 \pm 0.5_{\text{stat+sys}} \pm 0.3_{\text{lum}}$	4.5±0.3

Zy Kinematical Distributions

17 candidate events Estimated Bkg 5.0^{+2.2}_{-0.8} $\int Ldt=184 \text{ pb}^{-1}$ $\sigma(WW)=14.6 \stackrel{+5.8}{-5.1} \text{ (stat)} \stackrel{+1.8}{-3.0} \text{ (syst)}\pm0.9\text{(lum) pb}$ $\sigma(\text{pp}\rightarrow\text{WW})_{\text{NLO}}=11.3\pm1.3\text{pb}$

Looking for WW \rightarrow (qq') (Iv_I) final states

WW Producti

Interesting Signal
 Background in SM Higgs searches
 Probe for new physics

W

17 candidate events Estimated Bkg 5.0^{+2.2}_{-0.8} $\int Ldt=184 \text{ pb}^{-1}$ $\sigma(WW)=14.6 \frac{+5.8}{-5.1} \text{ (stat)} \frac{+1.8}{-3.0} \text{ (syst)}\pm0.9 \text{ (lum) pb}$ $\sigma(\text{pp}→WW)_{\text{NLO}}=11.3\pm1.3\text{ pb}$

Looking for WW \rightarrow (qq') ($|v_i\rangle$ final states

∫Ldt = 194pb⁻¹

 $\sigma(pp \rightarrow ZZ/ZW+X)_{NLO}=5.0\pm0.4 \text{ pb}^{-1}$

	4 Lep	3 Lep	2 Lep	Comb.
WZ/ZZ	0.06±0.01	0.91±0.07	1.34±0.21	2.31±0.29
Bkg	0.01±0.02	0.07±0.06	0.94±0.22	1.02±0.24
Bkg+Sig	0.07±0.02	0.98±0.09	2.28±0.35	3.33±0.42
Data	0	0	3	3

Extracted a limit for cross section

Measurement possible with available collected statistics

 $\sigma(pp \rightarrow ZZ/ZW+X)_{CDF} < 15.2 \text{ pb} @95\% \text{ C.L.}$

Perspectives and Working Areas

Electroweak physics program at CDF goes well Inclusive cross section, widths, BF in all leptonic channels. Working on Differential Cross Sections Z asymmetries Quark gauge bosons couplings W asymmetries Shall be included in 2005 PDFs W Rapidity reconstruction Diboson production cross section (increase statistics) Extracting Triple Gauge Coupling Looking for hadronic final states $WW \rightarrow (qq')(lv_l)$ W Boson Mass Measurement: unveiling the central value Direct $\Gamma(W)$ measurement

O fortunati, quorum iam moenia surgunt! Verg., Aen., I 437

Electroweak RunII Publications hep-ex/0406078: "Inclusive W and Z Cross Section" hep-ex/0501023: "W Charge Asymmetry" hep-ex/0411059: "Z Forward Backward Asymmetry" hep-ex/0410008: "W gamma, Z gamma production" hep-ex/0501050: "WW Production" hep-ex/0501021: "WZ/ZZ Searches"

Backup Slides

The Run II CDF Detector

Tevatron Performances and Perspectives

Z Boson Cross Sections(e,µ)

Electron Channel Electron |η|<2.8 E_T>25 GeV

Muon Channel $P_T\mu$ >20 GeV/c

- Clean Signature
- Two High E_T
 Isolated lepton
- Opposite Charge
- High σ & S/B

	Events	Back.	$\sigma \bullet B(Z - > ll) (pb)$	Lum
e	1830	0.6%	$267 \pm 6_{stat} \pm 15_{sys} \pm 16_{lum}$	72.0
μ	3568	0.4%	$253 \pm 4.2_{\text{stat}}^{+8.3}_{-6.4\text{sys}} \pm 15.2_{\text{lu}}$	h 93.5

W Boson Production **Electron Channel Muon Channel**

Events/2.5GeV/c²

M_TW(GeV/c²)

900 800			Region	Events	Bkg		$\sigma \bullet B(W> ev) (pb)$
700 600	Mar 2002 Jan 2003	e	η <1.0	37584	4.4	72	2786±16 _{stat} ±64 _{sys} ±166 _{lum}
500 400	$ = \qquad $		1.1< η <2.8	10464	8.7	64	$2874 \pm 34_{stat} \pm 167_{sys} \pm 172_{lus}$
300 200 100		μ	η <1.0	57109	9.5	194	2786±12 _{stat} +65 _{-55sys} ±172 _{lur}
0	20 40 60 80 100 120 140		-				

Couplings Results

Quark Couplings:

	CDF	2 fb ⁻¹	Experimental	SM Prediction
	Run II	Uncert.	values (PDG)	
u _L	0.41 ± 0.14	± 0.028	0.330 ± 0.016	0.3459 ± 0.0002
u _r	0.02 ± 0.15	± 0.024	-0.176 ± 0.008	-0.1550 ± 0.0001
dL	-0.12 ± 0.39	± 0.057	-0.439 ± 0.011	-0.4291 ± 0.0002
d _r	-0.02 ± 0.22	± 0.088	-0.023 ± 0.058	0.0776 ± 0.0001

 $\sin^2 \theta_W^{\text{Eff}}$ =0.2238±0.0040_(stat)±0.0030_(syst) χ^2 =12.50/14

Electron Couplings:

 $\chi^2 = 13.14/13$

	CDF Run II	SLD+LEP	SM prediction
e _V	$\textbf{-0.058} \pm \textbf{0.017}$	-0.03816 ± 0.00047	-0.03816 ± 0.00047
e _A	-0.53 ± 0.14	-0.50111 ± 0.00035	-0.5064 ± 0.0001

χ²=10.40/11

2

√s, TeV

Indirect W Width measurement

Tau

Taus are difficult at hadronic colliders $\tau \rightarrow$ hadrons (τ_h) look like jets Need to combine: Tracking ($|\eta| < 1$) Calorimetric Clusters $\Delta \eta x \Delta \phi$ (0.1 x 15°) π° reconstruction (showermax inside EM Calorimeter resol. ~few mm)

Reconstruction Efficiency: ~70% @15 GeV ~85% @25 GeV ~95% @40 GeV

It is possibile to trigger on taus: Lepton + Track trigger (lepton + isolated track). Final states: $\tau_h + \tau_{(e,\mu)} + X$, $\tau_h + (e,\mu) + X$

Tau Physics Measurement

Track Multiplicity: 1 and 3 prongs

Z->teth

Events(e+μ)	Back(%)	σ•B(Wγ→lνγ) (pb)	σ x B _{Th} (pb)	
195+128	35(e),33(μ)	$18.1 \pm 1.6_{stat} \pm 2.4_{sys} \pm 1.2_{lum}$	19.3±1.4	
		B	aur Han Ohner	m

Baur, Han Ohnemus(1993,1998)

Z Asymmetry

Calculating A_{FB}

 cosθ* in Collin-Soper frame

 Minimize ambiguity in the incoming quark Pt

•Calculating A_{FB}:

 $A_{FB} = \frac{d\sigma(\cos\theta^* > 0) - d\sigma(\cos\theta^* < 0)}{d\sigma(\cos\theta^* > 0) + d\sigma(\cos\theta^* < 0)}$

$$I_{FB} = \frac{\frac{N^{+} - N_{Bkgrnd}^{+}}{a^{+}} - \frac{N^{-} - N_{Bkgrnd}^{-}}{a^{-}}}{\frac{N^{+} - N_{Bkgrnd}^{+}}{a^{+}} + \frac{N^{-} - N_{Bkgrnd}^{-}}{a^{-}}}$$

a : Forward/Backward Acceptance & Efficiency

 N^{\pm} : Forward/Backward Candidates

 $cos\theta^*>0 \equiv Forward \\ cos\theta^*<0 \equiv Backward$

Data-MC Comparisons

Data-MC: $Cos(\theta^*)$

Couplings Results

Quark Couplings:

Electron Couplings:

χ^2 =13.14/13

	CDF Run II	SLD+LEP	SM prediction
e _v	-0.058 ± 0.017	-0.03816 ± 0.00047	-0.03816 ± 0.00047
e _A	-0.53 ± 0.14	-0.50111 ± 0.00035	-0.5064 ± 0.0001

sin²Θ_w^{Eff} Measurement:

 $\sin^2 \theta_W^{\text{Eff}}$ =0.2238±0.0040_(stat)±0.0030_(syst) χ^2 =12.50/14

W Asymmetry

Anastasiou, Dixon, Melnikov, Petriello, Phys Rev D 69, 094008 (2004)

Charge ID is crucial at high rapidity

Raw Asymmetry

Shape is convolution of $\mathcal{A}(\mathbf{y}_{W})$ and V-A

Curve is just to guide the eye.

Corrections to extract true asymmetry:

- Charge misidentification rate.
- Background subtraction.
 - Both bias the asymmetry low \rightarrow dilution.
 - Measured in each η bin.
 - Uncertainties in corrections go directly in \mathcal{A} .

W Asymmetry

Phoenix (Calorimeter-Seeded)

Tracking Use both central and <u>forward</u> electrons! $|\eta| < 2.8$

Two points and a curvature define a helix:

- Primary collision vertex position.
- Fitted position of calorimeter shower maximum.

 $[cluster \ transverse \ mas} M_T^2(l\gamma, \not\!\!\!E_T) = [(M_{l\gamma}^2 + |\vec{p_T}(l) + \vec{p_T}(\gamma)|^2)^{1/2} + \not\!\!\!\!E_T]^2 - |\vec{p_T}(l) + \vec{p_T}(\gamma) + \not\!\!\!\!E_T |^2]]$

LO MC

Inteference between ISR and TGZ gives radiation zero (RAZ)

Ζ-γ

WW-> $ev+\mu v_{\mu}$

 $\begin{array}{l} {\color{black} {\rm Run \ 155364 \ Event \ 3494901: \ WW \rightarrow e^+ \nu_e \mu^- \bar{\nu}_\mu \ {\rm Candidate} \ } \\ \hline p_T(e) = 42.0 \ {\rm GeV/c}; \quad p_T(\mu) = 20.0 \ {\rm GeV/c}; \quad M_{e\mu} = 81.5 \ {\rm GeV} \\ \hline {\color{black} {\it E}_T} = 64.8 \ {\rm GeV}; \quad \Phi({\color{black} {\it E}_T}) = 1.6 \\ \hline \Delta \Phi({\color{black} {\it E}_T}, {\rm lepton}) = 1.3; \quad \Delta \Phi(e,\mu) = 2.4; \quad {\rm Opening-Angle}(e,\mu) = 2.6 \end{array}$

 ☆ eµ channel has little Standard Model background
 ☆ Signal/Background = 4

WW-> $ev+\mu v_{\mu}$ or ZZ->ee vv?

W Boson Mass background

Muons

Background	%
Hadronic Jets	0.9 ± 0.5
Kaons	1.0 ± 1.0
Cosmic Rays	0.3 ± 0.1
Z μμ	4.4 ± 0.2
₩→ τν	1.9 ± 0.1

Electrons			
Background	%		
Hadronic Jets	1.1 ± 0.4		
Z ee	0.27 ± 0.03		
W→τν	1.9 ± 0.1		

W Boson Mass

Systematic	Electrons (Run 1b)	Muons (Run 1b)
Lepton Energy Scale and Resolution	70 (80)	30 (87)
Recoil Scale and Resolution	50 (37)	50 (35)
Backgrounds	20 (5)	20 (25) CD
Statistics	45 (65)	50 (100) PREI
Production and Decay Model	30 (30)	30 (30)
Total	105 (110)	85 (140)

WW production: Kinematical Distributions

Lepton P_{T}

Dilepton Invariant Mass

No significant excess so far