Top Mass Measurements at CDF

Erik Brubaker University of Chicago May 19, 2005

Where we're going

• Introduction to top physics and top mass

- Run I world average: $M_{top} = 178.0^{+4.3}$ GeV/c²

- Challenges in measuring top quark mass
- Description of the template method
- Current result: $M_{top} = 173.5^{+4.1} 4.0 \text{ GeV/c}^2$
- Other techniques, results

The Top Quark

- Feels strong, electroweak, gravitational forces.
- Short-lived—doesn't hadronize $(\tau = 4 \times 10^{-25} \text{ s}).$
- Especially interesting due to its mass
 - Most massive particle at ~175 GeV/ c^2 .
 - More massive than b quark by factor of 35.
 - SM Yukawa coupling ~ 1 ... Special role??

LBNL Research Progress Meeting

Why measure the top quark mass?

- Fundamental dimensionless • parameter of SM close to 1.
- Related to other SM parameters and observables through loop diagrams.
 - Global fit (LEPEWWG) provides consistency check and predicts mass of putative Higgs particle.
 - M_t (and M_w) particularly poorly known in terms of effect on M_H prediction.

19 May, 2005

LBNL Research Progress Meeting

Obligatory accelerator slide

- Tevatron run II: $\sqrt{s} = 1.96$ TeV
- Peak luminosity broke $1.2 \times 10^{32}!$

19 May, 2005

02/01/02

04/01/02

12/01/01

10/10/01

06/01/02

Peak Luminosity
 Peak Lum 20X Average

1.40E+32

1.20E+32

1.00E+32

8.00E+31

6.00E+31

4.00E+31

2.00E+31

0.00E+00

04/01/01 06/01/01 08/01/01

Peak Luminosity

Obligatory detector slide

- Collider Detector at Fermilab
- Standard onion-like general-purpose particle physics detector
 - Tracking system
 - Calorimeters
 - Muon system

 → Silicon detector → b tagging
 Excellent lepton ID and triggering
 Coarse segmentation, non-linear response

Top phenomenology

- Mass analyses use t-tbar pair events.
 - $\sigma = 6.7 (5.7) \text{ pb}$ @ $M_t = 175 (180) \text{ GeV/c}^2$.
 - ~85% quark annihilation,~15% gluon fusion.
- Top always decays to W boson and b quark.
 - Events classified by decay of W to leptons or quarks
 - Identifying b quark improves S/B ratio

Run I mass measurements

- 106-125 pb⁻¹.
- L+Jets most sensitive channel.
- World average 178.0 ± 4.3 dominated by D0 L+Jets result.
- Run II analyses using >300 pb⁻¹
 Should do better!

What's the big deal?

Events are complicated!

- Experimental observations are not as pretty as Feynman diagrams!
 - Additional jets from ISR, FSR.
 - Which jets go with which quarks?
 - Dileptons: 2 neutrinos, 1 \mathbb{E}_{T} measurement.

What's the big deal, part III

Background contamination!

- Top events: trade-off between sample size and purity.
- Presence of background events dilutes mass information from signal events.
- Effects of background must be treated properly to avoid bias.

Typical S:B Ratio			
L+Jets	0 tags	1 tag	2 tags
	<1:1	3:1	10:1
Dilep		2:1	

- Dominant backgrounds
 - W+jets (incl W+h.f.)
 - Non-W (QCD)
 - Z+jets
 - Fakes

How to Weigh Truth

TEMPLATES

- 1. Pick a test statistic (e.g. reconstructed mass).
- 2. Create "templates" using events simulated with different M_{top} values (+ background).
- 3. Perform maximum likelihood fit to extract measured mass.

DIRECT PROBABILITY

- Build likelihood directly from PDFs, matrix element(s), and transfer functions that connect quarks and jets.
- 2. Integrate over unmeasured quantities (e.g. quark energies).
- 3. Calibrate measured mass and error using simulation.

Introduction to Templates

Template Analysis Overview

Event-by-event Mass Fitter

- Distill all event information into one number (called reconstructed mass).
- Select most probable jetparton assgnmt based on χ^2 , after requiring b-tagged jets assigned to b partons.

19 May, 2005

Signal templates

Parameterization: Build signal p.d.f. as a function of generated mass.

Background template

CDF Run II Preliminary (162 pb⁻¹)

Mass Template Source	Background Source	# of events
W+jets (mistags)	Mistags, QCD	4.4 ± 1.0
Wbb	Wbb, Wcc, Wc, WW/WZ	2.1 ± 0.7
Single Top	Single Top	0.33 ± 0.04
Total		6.8 ± 1.2

Constraint used in likelihood fit.

LBNL Research Progress Meeting

Unbinned likelihood fit

- Free parameters are M_{top} , n_s , and n_b .
 - Profile likelihood: minimize w.r.t. n_s, n_b , no integration.
- Fluctuations of n_b are a systematic effect. Allowing n_b to float in the fit means information in data is used to reduce the systematic uncertainty.

$$L = L_{\text{shape}} \times L_{\text{bg}}$$

$$L = L_{\text{shape}} \times L_{\text{bg}}$$

$$L_{\text{shape}} = e^{-(n_s + n_b)} (n_s + n_b)^N \prod_{i=1}^N \frac{n_s P_{sig}(m_i; M_{\text{top}}) + n_b P_{bg}(m_i)}{n_s + n_b}$$

$$L_{\text{bg}} = e^{-\frac{(n_b^{fit} - n_b^{\exp})^2}{2\sigma_{n_b}^2}} \longrightarrow \begin{array}{c} \text{bkgd (mean)}\\ \text{constraint} \end{array}$$

19 May, 2005

LBNL Research Progress Meeting

Turkersetting

Data fit

CDF Run II Preliminary (162 pb⁻¹)

More than 1 year ago!

19 May, 2005

Updated template result

- More data!
- Subdivide sample.

Templates: subdivide sample

- Use 4 categories of events with different background content and reconstructed mass shape.
- More b tags are better lacksquare
 - Increases S:B
 - More "golden" events, where correct jet-parton assignment is found.

j1-j3

j4

S:B

1.2:1

0.9:1

19 May, 2005

LBNL Research Progress Meeting

18:1

4.2:1

Result with 318 pb⁻¹

- Subdivision improves statistical uncertainty.
 - Pure and well reconstructed events contribute more to result.
 - Adds 0-tag events.
- Subdivision does *not* improve systematic uncertainty.
 - Most systematics, including jet energy scale, are highly correlated among the samples.

35%

45%

11%

9%

Result with 318 pb⁻¹

data distributions Curves: expected signal and background from global best fit

19 May, 2005

LBNL Research Progress Meeting

Systematics Summary

CDF Run II Preliminary (318 pb ⁻¹)		
Systematic Source	Uncertainty (GeV/c ²)	
Jet Energy Scale	3.1	
B-jet energy	0.6	
Initial State Radiation	0.4	
Final State Radiation	0.4	
Parton Distribution Functions	0.4	
Generators	0.3	
Background Shape	1.0	
MC statistics	0.4	
B-tagging	0.2	
Total	3.4	

Was 6.8 !!

- Reduced double counting
- Tuned simulation to data

Systematics dominated by jet energy scale.

CDF Run II Preliminary (318 pb⁻¹)

Jet Systematic Source	Uncertainty (GeV/c ²)
Relative to Central	0.6
Hadronic energy (Absolute Scale)	2.2
Parton energy (Out-of-Cone)	2.1
Total	3.1

World's Best Top Quark Mass: M_{top}+ JES simultaneous fit

- What is jet energy scale JES?
- Measure JES in situ.
- Perform simultaneous fit.

Jet systematics at CDF

- What is jet energy scale "JES"?
- Measures how incorrect is our nominal jet energy measurement.
- Units of σ: correspond to one s.d. of jet energy uncertainty
 - Accounts for p_T , η dependence.

W mass resonance in tt events!

- Can we use W→jj mass resonance to constrain JES?
- M_{top} measurement sensitive primarily to energy scale of b jets. (W mass constraint in χ^2 .)
 - But studies show most uncertainty is shared by light quark, b jets.
 - Only 0.6 GeV/ c^2 additional uncertainty on M_{top} due to bjet-specific systematics.

So use $W \rightarrow jj$ to improve understanding of q jets, therefore b jets, therefore M_{top} .

This constraint will only improve with statistics!

Measure JES using dijet mass

1400[[]

1000

800

600 400

GeV 1200

Events/5

CDF Run II Preliminary

ັ²5000 ອີ4000

₩3000

2000 E

1000

2-tag

All comb.

 $RMS = 36 \text{ GeV/c}^2$

Corr. Comb (50%)

 $RMS = 14 \text{ GeV/c}^2$

• Build templates using invariant mass m_{ii} of all non-tagged jet pairs.

1-tag(T)

All comb.

50 100 150 200 250 300 350

50 100 150 200 250 300 350

All comb.

 $RMS = 53 \text{ GeV/c}^2$

Corr. Comb (12%)

 $RMS = 17 \text{ GeV/c}^2$

m_{ii}(GeV/c²)

0-tag

 $RMS = 47 \text{ GeV/c}^2$

Corr. Comb (21%)

 $RMS = 15 \text{ GeV/c}^2$

m_{..}(GeV/c²)

The "2D" measurement

- How do we use this bonanza of JES information?
- Too many correlations to treat this as an independent measurement of JES.
- Take the plunge and fit for M_{top} and JES simultaneously...
 - Need "2D" templates: $P(m_t^{reco}; M_{top}, JES)$ and $P(m_{jj}; M_{top}, JES)$.
 - More complex, but still tractable.
 - Constrain to prior knowledge: JES = 0 ± 1 .
- Advantages:
 - Improve uncertainty on JES (dominant systematic) \rightarrow improve uncertainty on M_{top}.
 - With this method, JES uncertainty begins to scale directly with statistics!

Method checks

- Prove to ourselves that parameterizations and likelihood machinery work: measure the top quark mass in MC samples.
- M_{top} fit unbiased across input top mass and jet energy scales.
- Reported uncertainty scaled by ~1.03 as shown (effect of non-Gaussian likelihood).

Apply 2D fit to the data

JES = -0.10 + 0.78 - 0.80 (stat only) σ

 $M_{top} = 173.5_{-3.6}^{+3.7} \text{ (stat. + JES)} \pm 1.7 \text{ (syst.)} \text{ GeV/}c^2$

- Reported error includes both "pure statistics" and (reduced) JES systematic.
- Breaks down to $^{+2.7}_{-2.6}$ (stat) ± 2.5 (JES)
- 20% improvement in uncertainty due to JES!

1D result

was:

 $M_{\rm top} = 173.2^{+2.9}_{-2.8} \text{ (stat.)} \pm 3.1 \text{ (JES)} \pm 1.5 \text{ (syst.)} \text{ GeV}/c^2$

19 May, 2005

Reconstructed masses w/ overlaid fits

LBNL Research Progress Meeting

What if this were the only M_{top} result?

Electroweak fit using only this result as top quark mass.

A full combination of CDF/DO, Run I/II is months away...

Other Techniques and Results

- Dynamical Likelihood Method
- Multivariate Template Method
- Neutrino (Eta) Weighting
- Kinematic Method
- Neutrino (Phi) Weighting

Current CDF Measurements

Dynamical Likelihood Method

• Maximum likelihood method, where likelihood is built up for each event i as below.

DLM background

- More difficult to treat background than in template analyses.
- Ideally, need matrix element for background.
 - background fraction **CDF Run II Preliminary** Instead, DLM uses **190** 0% GeV/c a mapping ٥% 185 5% function: Reconstructed top mass 180 background dilutes 30% mass information 35% 40% 175 in a known 170 manner, so correct for it. 165 160 165 170 175 180 185 160 190 Input top mass GeV/c

LBNL Research Progress Meeting

DLM results

Source	$\Delta M_{top} \ { m GeV}/c^2$
Jet Energy Corrections	5.3
ISR	0.5
FSR	0.5
PDFs	2.0
Generator	0.6
Spin correlation	0.4
NLO effect	0.4
Transfer Function	2.0
Background fraction $(\pm 5\%)$	0.5
Background modeling	0.5
Monte Carlo modeling	0.6
Total	6.2

Jet systematics smaller than template methods.

Effect of transfer functions, integration over partons?

Use more event information?

19 May, 2005

Template/DLM comparison

Method	Template	DLM
163 pb ⁻¹ result	174.9 ± 9.9 ("1D")	177.8 ± 7.8
318 pb ⁻¹ result	173.5 ± 4.1 ("2D")	??
Selection	\geq 4 jets	= 4 jets
Combinatorics	Best χ^2	Use all
JES	W→jj	None yet
Background	Template	Mapping

- Complementary methods.
 - Different sensitivity to details of production and decay.
- Within a few weeks, DLM should have a result comparable to 2D template analysis.

Multivariate template method

- Add second test statistic: Σp_T^{4j}—discriminates signal vs background events.
- Fit jet energy scale in every event using W mass—trades statistical error for systematic.

pected Syst

Mt / Pt4J

19 May, 2005

0.15

0.1

stat

0.2 0.25 0.3 Jet Energy Scale Constrain

GeV/c²

Errors

pected Statistical

LBNL Research Progress Meeting

Dilepton analyses

- Under-constrained kinematic system.
- Must always make extra assumptions.
 - $-\eta_1, \eta_2$ of neutrinos
 - $-\phi_1, \phi_2$ of neutrinos
 - $-P^{z}_{ttbar}$
- So far, all analyses in this channel use the template approach.

Neutrino weighting approach

$$W(M_{t}, M_{W} = 80.5 \,\text{GeV/c}^{2}) = \sum_{\text{l-jet assn}} \iint_{\eta_{v}, \eta_{\overline{v}}} P(\eta_{v}, \eta_{\overline{v}}) \sum_{v \text{ solns}} e^{-\frac{(E_{x} - p_{x}^{v} - p_{x}^{\overline{v}})^{2}}{2\sigma_{x}^{2}}} \cdot e^{-\frac{(E_{y} - p_{y}^{v} - p_{y}^{\overline{v}})^{2}}{2\sigma_{y}^{2}}}$$

- Assume top mass, W mass, determine probability of event.
- Integrate over unknowns.
 - Lepton-jet pairing
 - Neutrino η
 - Missing energy solutions
- M_t for which event is most likely $\rightarrow M_{reco}$.

NWA results

 $M_{\rm top} = 168.1^{+11.0}_{-9.8}$ (stat.) ± 8.6 (syst.) GeV/ c^2

CDF II Preliminary

CDF Run II Preliminary (197 +/- 12 pb⁻¹)

19 May, 2005

LBNL Research Progress Meeting

43

Kinematic reconstruction assuming P^z_{tt}

- Assume $P_{tt}^z = 0 \pm 180 \text{ GeV/c}$
- Scan over P^z_{tt} and parton energies, perform kinematic reconstruction at each point.
- Test statistic is the top mass that contains the most likely point in this phase space (no integration).

Dilepton Reconstructed Mass

- Use χ^2 from the lepton + jets analysis, slightly modified.
 - Assume ϕ_1 , ϕ_2 of the two neutrinos (scan over plane).
 - Weight each point in $\phi_1 \phi_2$ space by $\exp(-\chi^2/2)$.
 - All points contribute to templates and to data distribution.

Dilepton reconstructed mass results

- Tighter selection than NWA gives fewer events, but smoother distrubution due to weighting solutions.
- Background peaks near signal—dilutes information in likelihood.

 $M_{\rm top}$

What's coming?

Maturing Analyses

- Matrix element techniques
 - Full background matrix element treatment
 - Apply to dilepton channel
- All-hadronic channel
 - Several algorithms in progress
 - Large background, more jets, even harder combinatorics!

General efforts

- Combine measurements across channels, techniques
 - Hard problem. Highly correlated systematics, non-Gaussian stat uncertainties.

Keep an eye on this page in the coming weeks... http://www-cdf.fnal.gov/physics/new/top/top.html

CDF top quark mass:

$$M_{top}$$
=173.5^{+4.1}-4.0 GeV/c²

Backups

Expected Statistical Uncertainty

Fit without JES constraint

- Remove constraint $JES = 0 \pm 1 \sigma$ in likelihood.
- So all information about jet energy scale comes from *in situ* W resonance!

$$M_{\rm top} = 174.0 \pm 4.5 \,({\rm stat.} + {\rm JES}) \pm ?? ({\rm syst.}) \,{\rm GeV}/c^2$$

Sample Composition

- Number of jets w/E_T>15 GeV in W+jets events.
- Contributions from each background process + tt.

