XXXV International Symposium on Multiparticle Dynamics 2005

University of Florida (for the CDF & D0 Collaborations)

Proton

Underlying E

ISMD 2005

Outgoing Parton

Multiple Parton Interactions Outgoing Parton

KROMĚŘÍŽ, CZECH REPUBLIC August 9-15, 2005

August 11, 2005

Rick Field - Florida/CDF

AntiProton

derlying Event

PT(hard)

Jet Physics and the Underlying Event at the Tevatron

Outline of Talk

- The Jet Cross Section in Run 2 at the Tevatron: MidPoint Algorithm (CDF/D0) and K_T Algorithm (CDF).
- The b-Jet Inclusive Cross Section in Run 2 at the Tevatron (CDF/D0).

Calorimeter Jet

- The b-bbar Jet Cross Section and Correlations (CDF).
 - Jet-Jet Correlations (D0).
 - Understanding and Modeling the "Underlying Event" in Run 2 at CDF.

ISMD 2005 August 11, 2005

The TeVatron Intermilable Accelerator CHAIN

CDF has ~900 pb⁻¹ on tape!

- **Proton-antiproton collisions**
- $\sqrt{s} = 1.96 \text{ TeV}$ (Run 1 = 1.8 TeV)
- ➡ 36 bunches: 396 ns crossing time
- Peak luminosity ~ 10³² cm⁻² s⁻¹
- 12-20 pb⁻¹ per week!

The TeVatron delivered more than 350 pb⁻¹ in 2004!

ISMD 2005 August 11, 2005

- Experimental Jets: The study of "real" jets requires a "jet algorithm" and the different algorithms correspond to different observables and give different results!
- Experimental Jets: The study of "real" jets requires a good understanding of the calorimeter response!
- Experimental Jets: To compare with NLO parton level (and measure structure functions) requires a good understanding of the "underlying event"! ISMD 2005 Rick Field - Florida/CDF
 Page 4

August 11, 2005

Jet Corrections

Calorimeter Jets:

- We measure "jets" at the "hadron level" in the calorimeter.
- We certainly want to correct the "jets" for the detector resolution and effieciency.
- Also, we must correct the "jets" for "pile-up".
- Must correct what we measure back to the true "particle level" jets!
- **Particle Level Jets:**
 - Do we want to make further model dependent corrections?
 - Do we want to try and subtract the "underlying event" from the "particle level" jets.
 - This cannot really be done, but if you trust the Monte-Carlo models modeling of the "underlying event" you can try and do it by using the Monte-Carlo models (use PYTHIA Tune A).
- **Parton Level Jets:**
 - Do we want to use our data to try and extrapolate back to the parton
 - This also cannot really be done, but again if you trust the Monte-Carlo models you can try and do it by using the Monte-Carlo models.

The "underlying event" consists of hard initial & final-state radiation plus the "beam-beam remnants" and possible multiple parton interactions.

August 11, 2005

Rick Field - Florida/CDF

August 11, 2005

Rick Field - Florida/CDF

ISMD 2005 August 11, 2005

August 11, 2005

CDF Inclusive Jet Cross Section

- Run 1 showed a possible excess at large jet E_T (see below).
- This resulted in new PDF's with more gluons at large x.
- The Run 2 data are consistent with the new structure functions (CTEQ6.1M).

Only towers with $E_T > 0.5$ GeV are shown

ISMD 2005 August 11, 2005

Outgoing Parton

Radiation

August 11, 2005

August 11, 2005

- → Jets containing heavy flavor often contain muons (*e.g.* $b \rightarrow c + W \rightarrow \mu + \nu$).
- Searching for muons in jets enhances the heavy flavor content.
- Data/PYTHIA flat ~ 1.3.

The b-bbar DiJet Cross-Section

ISMD 2005 August 11, 2005

The b-bbar DiJet Cross-Section

ISMD 2005 August 11, 2005 Rick Field - Florida/CDF

Rick Field - Florida/CDF

DØ Jet-Jet

Correlations

Jet#1-Jet#2 ∆¢ Distribution

- **MidPoint Cone Algorithm** (R = 0.7, $f_{merge} = 0.5$)
- Data/NLO agreement good. Data/HERWIG agreement good.
- Data/PYTHIA agreement good provided PARP(67)
 = 1.0→4.0 (i.e. like Tune A).

ISMD 2005 August 11, 2005

New CDF Run 2 results ($\mathcal{L} = 385 \text{ pb}^{-1}$):

- **Two Classes of Events: "Leading Jet" and "Back-to-Back".**
- **Two "Transverse" regions: "transMAX", "transMIN", "transDIF".**
- Data corrected to the particle level: unlike our previous CDF Run 2 "underlying event" analysis which used JetClu to define "jets" and compared uncorrected data with the QCD Monte-Carlo models after detector simulation, this analysis uses the MidPoint jet algorithm and corrects the observables to the particle level. The corrected observables are then compared with the QCD Monde-Carlo Monde-Carlo models at the particle level.

➡ For the 1st time we study the energy density in the "transverse" region.

• Look at charged particle and calorimeter tower correlations in the azimuthal angle $\Delta \phi$ relative to the leading calorimeter jet (MidPoint, R = 0.7, $f_{merge} = 0.75$, $|\eta| < 2$).

• Define $|\Delta \phi| < 60^{\circ}$ as "Toward", $60^{\circ} < -\Delta \phi < 120^{\circ}$ and $60^{\circ} < \Delta \phi < 120^{\circ}$ as "Transverse 1" and "Transverse 2", and $|\Delta \phi| > 120^{\circ}$ as "Away". Each of the two "transverse" regions have area $\Delta \eta \Delta \phi = 2 \times 60^{\circ} = 4 \pi / 6$. The overall "transverse" region is the sum of the two transverse regions ($\Delta \eta \Delta \phi = 2 \times 120^{\circ} = 4 \pi / 3$).

ISMD 2005 August 11, 2005

- Look at the "transverse" region as defined by the leading jet (|η| < 2) or by the leading two jets (|η| < 2). "Back-to-Back" events are selected to have at least two jets with Jet#1 and Jet#2 nearly "back-to-back" (Δφ₁₂ > 150°) with almost equal transverse momenta (P_T(jet#2)/P_T(jet#1) > 0.8) and P_T(jet#3) < 15 GeV/c.</p>
- Shows the Δφ dependence of the charged particle density, dN_{chg}/dηdφ, for charged particles in the range p_T > 0.5 GeV/c and |η| < 1 relative to jet#1 (rotated to 270°) for 30 < E_T(jet#1) < 70 GeV for "Leading Jet" and "Back-to-Back" events.</p>

August 11, 2005

- Use the leading jet to define the MAX and MIN "transverse" regions on an event-byevent basis with MAX (MIN) having the largest (smallest) charged PTsum density.
- Shows the "transDIF" = MAX-MIN charge PTsum density, dPTsum/dηdφ, for p_T > 0.5 GeV/c, |η| < 1 versus P_T(jet#1) for "Leading Jet" and "Back-to-Back" events.

0.5

0.0

HW

Shows the charged PTsum density, dPT_{sum}/dŋdø, in the "transMAX" and "transMIN" region ($p_T > 0.5$ GeV/c, $|\eta| < 1$) versus P_T(jet#1) for "Leading Jet" and "Back-to-Back" events.

Jet #2 Direction

Compares the (corrected) data with **PYTHIA Tune A (with MPI) and** HERWIG (without MPI) at the particle level.

MidPoint R = 0.7 |n(jet#1) < 2

Charged Particles (|n|<1.0, PT>0.5 GeV/c)

ISMD 2005 August 11, 2005

"Away"

Rick Field - Florida/CDF

Use the leading jet to define the MAX and MIN "transverse" regions on an event-byevent basis with MAX (MIN) having the largest (smallest) charged PTsum density.

Shows the "transDIF" = MAX-MIN ETsum density, dET_{sum}/dηdφ, for all particles (|η| < 1) versus P_T(jet#1) for "Leading Jet" and "Back-to-Back" events.

ISMD 2005 August 11, 2005

b-jet direction

"Toward

"Away

The MidPoint jet cross section at the Tevatron is consistent with theory (CTEQ61M) over 9 decades!

The K_T algorithm works fine at the Tevatron and theory/data (CTEQ61M) look flat!

The measured the inclusive b-jet section, b-bbar jet cross section and correlations, are behaving as expected from theory - nothing goofy!

We are making good progress in understanding and modeling the "underlying event". We have PYTHIA Tune A and JIMMY tune A, however, we do not yet have a perfect fit to all the features of the "underlying event". We are working on new improved Run 2 tunes!

ISMD 2005 August 11, 2005

Much more QCD physics to come from the Tevatron!

Some CDF-QCD Group Analyses!

- Jet Cross Sections and Correlations: MidPoint and KT algorithms with L = 1 fb⁻¹!
- ➡ DiJet Mass Distributions: △ distribution, compositness.
- Heavy Flavor Jets: b-jet and b-bbar jet cross sections and correlations.
- **>** Z and W Bosons plus Jets: including b-jets.
- Jets Fragmentation: jet shapes, momentum distributions, twoparticle correlations.
- Underlying Event Studies: distributions as well as averages for charged particles and energy for jet, jet+jet, γ+jet, Z+jet, and Drell-Yan.
- ➡ Pile-Up Studies: modeling of pile-up.
- Monte-Carlo Tuning: New Run 2 PYTHIA tune, tuned JIMMY, PYTHIA 6.3, Sherpa, etc..

Analyses using 1fb⁻¹ of data by Winter 2006!

ISMD 2005 August 11, 2005 *Rick Field - Florida/CDF*

Chicado

