Top Quark Pair Production at 1.96 GeV using Lepton + Jets events at CDF

Joao Guimaraes da Costa Harvard University (for the CDF Collaboration)

HEP2005 Lisboa, Portugal

July 23, 2005 Top Cross Section in the Lepton+Jets Sample --- Joao Guimaraes HEF

HEP2005

1

Motivation

- Top quark: The young member of the SM family
 - Discovered in 1995 but still almost everything to learn
 - 1. Is the W+jets event excess pure $t\bar{t}$ production?

Top Quark Pair Production at the Tevatron

Theoretical uncertainty: ~ $\pm 15\%$

- PDFs
- Renormalization/factorization
 scale

$$\begin{array}{c|c}
M_{top} & \sigma(p\overline{p} \rightarrow t\overline{t}) \\
\hline
(GeV/c^2) & (pb) \\
\hline
170 & 7.8 \\
\hline
175 & 6.7 \\
\hline
178 & 6.1 \\
\hline
\end{array}$$

M. Cacciari et al. JHEP 0404:068 (2004) N. Kidonakis and R. Vogt, Phys. Rev. D 68 114014 (2003)

July 23, 2005Top Cross Section in the Lepton+Jets Sample --- Joao GuimaraesHEP20053

The CDF Run II Detector

Lepton+Jets Event Selection

Secondary Vertex B-Tagging Algorithm

New offline/ Updated tagger

- Tracking improvements
 - Silicon L00
 - More forward tracks $|\eta|>1$
- Algorithm optimization
 - Loosen track selection
 - Tighten vertex quality requirements
 - ~ 20% b-jet efficiency increase~ 30% mistag increase/jet

Tight/Loose Secondary Vertex Tagger

Top Cross Section: Tight / Loose Tagger

 Acceptance and efficiency from Pythia MC

$$\sigma(t\bar{t}) = \frac{N_{obs} - N_{bkg}}{A\epsilon_b \int Ldt}$$

	Top Tagging Efficiency/Evt (%)					
	Tight	Loose	Gain			
≥1-tag	60 ± 3	69 ± 4	15%			
≥2-tag	16 ± 4	23 ± 4	44%			

Efficiency corrected with data/MC SF

- Backgrounds:
 - Wbb,Wcc,Wc
 - ALPGEN+HERWIG MC
 - Normalized to pretag W+jets data
 - W+light (mistags)
 - Mistag matrix from jet sample
 - Applied to pretag W+jets data
 - Non-W
 - From data
 - Electroweak (single top, WW, WZ, Z-> τ τ)
 - From Pythia MC
 - Small contribution

Top Cross Section (Loose Tagger)

Sample	Events	tt fraction	σ (<i>tt</i>)
≥ 1 b-tag	174	73%	8.7 ^{+0.9} +1.2 pb
≥ 2 b-tags	54	92%	$10.1^{+1.6}_{-1.4}$ $^{+2.1}_{-1.4}$ pb

Top Cross Section Using Kinematics in a Neural Net

- Method uses pretag sample
 - Independent of b-tagging
 - Top kinematics and event shape information combined in a NN
- Updated result
 - 194 pb⁻¹ 347 pb⁻¹
- Lepton + Jets Selection
 - No H_T or M_T cuts
 - Additional QCD CUT:
 - $\Delta \phi$ cut: 0.5 < $\Delta \phi$ (MET-leading jet) < 2.5 for MET < 30 GeV

≥ 3-Jet Sample:
 a priori most sensitive
 ≥ 4-Jet Sample:

better S:B \rightarrow cross check

The Neural Network

- Seven input variables
 - $-H_T$
 - Aplanarity
 - Maximum jet η
 - ΣE_T (Jets 3, 4, and 5)
 - $-\Sigma p_Z \Sigma E_T$
 - Minimum dijet invariant mass
 - Minimum dijet separation (ΔR)

NN Analysis Results

tt and W-background float Fit NN output from data to NN templates multijet fixed to 4.6% CDF Preliminary (347 pb⁻¹) ···· multijet **Templates** 160 ······ W+jets NN Templates (Normalized to Unit Area) tŦ 140 0.2 Arbitrary Units 0.16 0.14 combined 0.2 tt signal data events/ 0.04 80 0.04 90 0.04 Electroweak backgrounds Ν ≥3 QCD multijet backgrounds 0.14 signal: 148.2 ± 20.6 events $N_{jets} \ge 3$ multijet: 43.2 ± 3.7 events 0.12 Wjets: 744.4 ± 32.8 events 0.1 60 0.08 40 0.06 0.04 20 0.02 0 0.2 0.3 0.4 0.5 0.6 0.7 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.1 0.8 0.9 0 **ANN output** NN Output **Systematics** Total Jet Et Scale 8.3% $\sigma(tt)$ Sample **Events** Fitted *tt* W+jets Q^2 Scale 10.2% $W + \ge 3$ jets 936 148.2 ± 20.6 $6.0 \pm 0.8 \pm 1.0 \text{ pb}$ ttbar PDF 4.4% $W + \ge 4$ jets 210 80.9 ± 15.0 6.1 ± 1.1 ± 1.4 pb 16.4% Total Top Cross Section in the Lepton+Jets Sample --- Joao Guimaraes July 23, 2005 **HEP2005** 13

Cross Section Dependence on Top Mass

Summary

Cacciari et al. JHEP 0404:068 (2004)	Assume m _t =178 GeV/c ²		New:	~350 pb ⁻¹		Old: ~200 pb ⁻¹		
Dilepton; Combined	$6.9 \pm {}^{2.4}_{2.1} \pm {}^{1.7}_{1.2}$		Events	Relative Uncertainty	,	Relative Uncertainty		
Lepton+Jets: Kinematic NN (L= 347pb ⁻¹)	$6.3 \pm {}^{0.8}_{0.8} \pm {}^{1.0}_{1.0}$		936	21%		28%		
Lepton+Jets: Loose Vertex Tag (L= 318pb ⁻¹)	$8.7 \pm {}^{0.9}_{0.9} \pm {}^{1.2}_{0.9}$		174	16%				
Lepton+Jets: Tight Vertex Tag (L= 318pb ⁻¹)	$8.7 \pm {}^{0.9}_{0.9} \pm {}^{1.2}_{0.9}$		138	16%		2070		
Lepton+Jets: Dbl Loose Vertex	Tag 10.1 $\pm \frac{1.6}{1.4} \pm \frac{2.1}{1.4}$		54	23%				
Lepton+Jets: Dbl Tight Vertex T	ag 8.7 $\pm \frac{1.8}{1.6} \pm \frac{1.9}{1.3}$		33	27%		1170		
Lepton+Jets: Soft Muon Tag (L= 193pb ⁻¹)	$5.1 \pm {}^{3.3}_{3.3} \pm {}^{1.3}_{1.0}$		[31% loose					
MET+Jets: Vertex Tag	$5.9 \pm {}^{1.1}_{1.1} \pm {}^{1.6}_{1.1}$	0	Overlap: single/double tag 24% tight					
All Hadronic: Vertex Tag $(L=311pb^{-1})$ 0 2 4 6	7.5± ^{1.7} ± ^{3.3} 1.7± ^{2.2} 8 10 12 14	0	Overlap: loose/tight tagger { 79% single 61% double					
$\sigma(p\overline{p} \rightarrow t\overline{t})$	(pb)	-						
uly 23, 2005 Top Cross Section in the Lepton+Jets Sample Joao Guimaraes HEP2005 15								

Conclusions

Experimental uncertainty has reached the theory uncertainty level

Starting Probe of {QCD New Physics

1 fb⁻¹ winter 2006

Measurement limited by systematic uncertainties

Multiple tagging:

- \geq 120 double tagged top events in 1 fb⁻¹
- Full reconstruction of events
 - More precise measurement of top mass
 - Study of top properties