

Search for chargino and neutralino associated production at the Tevatron

D. Bortoletto Purdue University

Representing CDF and D0

ABS 234 and 741

HEP2005 Europhysics Conference in Lisboa, Portugal

July 21 to July 27, 2005

SUSY

- Extension of the SM
 - Solves "fine-tuning" (if M_{susy}<1 TeV)
 - Unifies gauge couplings
 - Includes quantum gravity
- SM and SUSY states carry opposite R_{parity}=(-1)^{3(B-L)2S}

- If R-parity is conserved — Lightest SUSY Particle (LSP) is a dark matter candidate
- SUSY is broken (M_{SUSY}>M_{SM})
- Simplest extension (MSSM) has 124 free parameters

CMSSM

 $\begin{array}{l} m_0: \mbox{ sfermion mass} \\ m_{1/2}: \mbox{ gaugino mass} \\ \mbox{ Sgn}(\mu): \mbox{ higgs}(ino) \mbox{ mass term} \\ \mbox{ tan}\beta: \mbox{ ratio Higgs fields vev} \\ \mbox{ A}_t: \mbox{ trilinear coupling stop} \\ \mbox{ M}_A: \mbox{ pseudoscalar Higg mass} \end{array}$

MSUGRA

 $\begin{array}{l} m_0: \mbox{ sfermion mass} \\ m_{\frac{1}{2}}: \mbox{ gaugino mass} \\ \mbox{ Sgn}(\mu): \mbox{ higgs}(ino) \mbox{ mass term} \\ tan\beta: \mbox{ ratio Higgs fields vev} \\ A_0: \mbox{ trilinear coupling (Higgs-sfermion_{R})} \end{array}$

Chargino and neutralino

Chargino and neutralino associated production and decay into leptons is the SUSY golden channel Simulated SUSY event

Constrain CMSSM using M_W , $sin^2\theta_{eff}$, BR(b $\rightarrow s\gamma$), (g-2)_µ and WMAP

Best fit for tan β =10 prefers m_{1/2}~300 GeV

Prospects to observe SUSY at the Tevatron

HEP2005

Decays

Final state depends also on tan β

Large tan $\beta \Rightarrow$ stau becomes the lightest slepton \Rightarrow enhanced decays into τ

The Tevatron at Fermilab

Analysis Status

D0 6 analysis

ee, µµ, or eµ ($P_T \cong 10 \text{ GeV}$) + ℓ ℓ = isolated track P_T >5 GeV

eτ or $\mu \tau + \ell$ or τ τ = identified with NN ℓ = isolated track P_T>5 GeV

µµ same sign (P_T ≅10 GeV)

COMBINED RESULTS AVAILABLE

I will show selected results:

- Leptons + taus from D0
- High pT ee and µµ + lepton from CDF

CDF 6 analysis

High p_T μμ + lepton (P_T > 20, 8, 5 GeV)

High E_T ee + lepton ($P_T > 20, 8, 5$ GeV)

Low E_τ ee+ track (P_τ >10,5,4 GeV) (sensitive to τ 1p decays)

Low p_T µµ+ lepton

High p_T eµ + lepton progress

Low $p_T e\mu + track$

HEP2005

CDF ee ℓ and $\mu\mu\ell$ analyses

SM background Z/ γ^* , W+ γ , diboson, Z/ γ^* , $\rightarrow \tau\tau$, tt overwhelms New Physics

CDF ee ℓ and $\mu\mu\ell$ analyses

CDF Summary Results

D0 eτ^{had}+lepton

- τ ID: narrow calorimeter cluster matched up to 3 tracks (NN) tested on $Z/\gamma^* \rightarrow \tau \tau$
- P_T (e) >8 GeV, P_T (τ) >8 GeV
- Z Veto: 10<M(e,τ)<60 GeV, Δφ(e, τ)<2.9

Significant MET

- MET>25 GeV, scaled MET>8√GeV
- Min(MT(e,MET), MT(τ,MET) >10 GeV
- **tt veto:** $H_T < 60$ GeV where $H_T = \Sigma P_{T,jets}$

Combined D0 limit

Combine analysis, using
 LEP CLs method:
 Assign signal to maximize the combined sensitivity

■m-SUGRA scenario

$$m(\tilde{\chi}^{\pm}) \approx m(\tilde{\chi}_{2}^{0}) \approx 2m(\tilde{\chi}_{1}^{0})$$
■For degenerate slepton

masses limit is function of the chargino and slepton masses

In the heavy squark limit

In the 3ℓ-max scenario

 $m(\tilde{\chi}_{1}^{\pm}) > 128 GeV \ at \ 95\% CL$

Conclusions

Candidate event

