

Tau Identification at theTevatron

Stephen Levy, UChicago for the CDF and D0 Collaborations Hadron Collider Physics July 05, 2005

- Motivation
- Tau properties
- Tau id basics (CDF & D0)
- Cut based tau id (CDF)
- Neural net tau id (D0)
- Tau triggers (CDF & D0)
- Electroweak tau results (CDF & D0)
- Higgs \rightarrow tau tau results (CDF)
- Conclusion

(electrons and muons are easier)

- Theory
 - 3rd generation connection to EWK symmetry breaking
 - SUSY solves SM Higgs mass fine tuning
 - MSSM Higgs h,H,A,H⁺,H⁻ couplings defined by m_A, tan β

Tau Properties

- Heavy lepton Mass = 1.78 GeV
- Short lived lepton mean lifetime = 291 ps cτ = 87 μm (ct of B0 ~ 460 μm) Typical silicon displaced vertex resolution O(50-100μm)
- Suppose of the transmission of the transmissio

• Spin 1/2

Decay angle distributions depend on τ polarization Decays to scalar and vector mesons Potential to separate taus from H⁺ and W decays (hep-ph/9905542)

Final State	Br. Frac (%)	Decay Type	
$e v_e v_\tau$	17.8	Leptonic	
$\mu \nu_{\mu} \nu_{\tau}$	17.4	35.2	Γ ^t e ^t μ
$\pi \nu_{ au}$	11.1	One Drong	
ρ(π π ⁰) ν _τ	25.1		
$\pi \ge 2\pi^0 \nu_{\tau}$	10.3	40.5	$\succ \tau_{h}$
πππ ν _τ	9.5	Three-Prong	
$\pi\pi\pi \ge 1\pi^0 \nu_{\tau}$	4.4	13.9	J

- Typically at Tevatron, identifying lepton really means identifying *isolated* lepton
- Use electron and muon identification for τ_e and τ_u
- Tau is essentially a narrow jet in detector
 - Track(s) pointing at hadronic calorimeter energy deposition
 - Maybe associated EM energy from $\pi^0 \rightarrow \gamma \gamma$

- Electrons and some jets are also "narrow jets"
 - Jet from tau decay has mass < tau mass
 - Tau *event* contains real missing energy from neutrino (jets create instrumental missing energy due to cracks, mismeasurements, etc.)
 - Tau lifetime means decay products have larger impact parameters on average (heavy flavor jets as well)

July 5, 2005

- Ratio of qcd jet cross section (order mb) to EWK cross section (order nb) at tevatron ~ 1e6
- Compare "typical" high-pt (>20 GeV) isolated lepton efficiency and fake rates

Lepton	Efficiency	Fake Rate
electron	~80%	~0.01%
muon	~85%	~0.01%
tau (box cuts)	~45%	~1-0.1%
tau (neural net)	~80%	~5-1%

Identify taus on statistical basis using event topology to fight background

- Isolation provides powerful jet rejection
- Calorimeter resolution leads to different tau reconstruction approaches for CDF & D0
- Both require narrow calorimeter seed energy deposition (~5 GeV) with well measured track pointing at cluster
 - CDF narrow means \leq 6 towers
 - D0 uses rms of cluster width weighted by $E_{\!T}$
- CDF uses cut based tau identification
- D0 uses neural net based tau identification

CDF Cut Based Tau Id

CDF Shrinking Cone Id

- CDF defines signal and isolation cone around seed track direction
- Veto any tau candidate with a good track in the isolation region

shrinking cone angle∝1/E_t

CDF π^0 reconstruction

Proportional strip/wire drift chamber (CES) located 6 radiation lengths inside EM calorimeter used for electron id and π^0 reconstruction

Spatial resolution O(2-3 mm)

Reconstruction of $\rho(\pi \pi^{*}\pi^{0})$ candidates in W(\rightarrow tau nu) data sample Reject tau if any π^{0} in isolation cone has energy > 0.5 GeV

$$F(\pi^0) = F_{ev}(FM) - \Sigma(0.3 + 0.21 \times p^3)$$

RΚγ

CDF Tau Id Variables

- Track and π^0 isolation
- "Visible" mass of tracks & π^0 s
- Anti-electron veto ξ : Had Energy / Σp_{trk} > 0.2
- Charge of tau tracks = 1
- Number of tau tracks = 1,3

Cluster energy / track p

Cumulative CDF tau id efficiency as a function of tau visible energy for hadronically decaying taus in range $|\eta| < 1$

200 Same cuts for all τ final states

July 5, 2005

CDF tau fake rate

- Use qcd events triggered by jet with $E_T 20, 50, 70, 100$ GeV to measure fake rate
- Fake rate estimation varies by 50% across samples for given jet energy

- Parameterize using uncorrelated boost $\gamma = E_{CLUS} / m_{CLUS}$
- Mean boost varies for same energy across jet samples
- Fake rate estimation varies by 20% using 2-d param of energy and boost

D0 Neural Net Tau Id

D0 neural net tau id

- Separate taus into 3 categories based on final state particles
 - Type 1: 1 track
 - Type 2: 1 track with EM energy
 - Type 3: more than 1 track
 - (Electrons can contribute to Types 1,2)
- Use separate NN training for each type with MC tau for signal and jets from data for background
- NN input variables use energy ratios to minimize tau energy dependence (vary by tau type)

D0 neural net variables

Tau Type

1

2

- profile = $(E_{T1} + E_{T2})/E^{\tau}_{T}$
- All caliso = outer cone E / inner cone E
- trkiso = isolation trk p_T / tau trk p_T
 - EM shape (reject jet + soft π^0)
- 1,3 seed trk p_T / E_T
 - seed track energy isolation correlation
- 2,3 Mass dependent variables

Additionally analysis dependent anti-muon requirement and/or additional NN to separate electrons and taus

- CDF and D0 have single tau and di-tau triggers Tau plus missing E_T (MET) used for CDF W(→τν) analysis D0 uses neural net for low pt tau in Level 3 (L3) trigger
- Electron or Muon plus isolated track (=tau) trigger L1 trigger EM tower and associated track (8 GeV/c) or L1 stub in muon detector and associated track (8 GeV/c) Additional track at L2 with p_T > 5 GeV/c L3 requires isolation around tau candidate track CDF uses for Z → τ_e τ_h and H → τ τ
- Some analyses with tau plus additional e⁻ or μ⁻ rely on inclusive e/μ trigger

D0: $Z \rightarrow \tau_{\mu} \tau_{h}$ D0: SUSY 2 electrons + tau

Typical CDF trigger rates & cross sections @ 1e32/cm²/sec

Trigger	Rate	Cross Section
Tau Met	0.5 Hz	5 nb
Di-tau	1.2 Hz	12 nb
electron track	3.0 Hz	30 nb
muon track	1.5 Hz	15 nb

D0 Electroweak Tau Results

PRD 71, 072004

Require isolated muon (pT > 12 GeV) opposite tau object

Use SS data to predict QCD background

W+j shape from MC and normalization from data

Compare output of NN for OS data and background for all tau types

226/pb luminosity

CDF electroweak tau results

CDF: W $\rightarrow \tau_h \nu$

W decays are largest source of hadronic tau decays

Require large MET (> 25 GeV) and high p_T tau candidate (>25 GeV)

No other jet (>5GeV) in event

S:B ~ 3 with 24 taus / pb

Nucl. Phys. Proc. Suppl. 144, 323-332 (2005)

 σ Br(W→ τ v) = 2.62 ± 0.07(stat) ± 0.21(sys) ± 0.16(lum) pb

 $g_{\tau} / g_{e} = 0.99 \pm 0.02 \text{ (stat)} \pm 0.04 \text{ (syst)}$

- Irreducible background to Higgs $\rightarrow \tau \tau$ search
- Isolated electron (E_T>10 GeV/c) and hadronic tau (p_T>15 GeV/c)
- Event topology cuts to reject qcd and W+jet backgrounds
- Cross section consistent with SM expectation

CDF: MSSM h,H,A $\rightarrow \tau \tau$

Reconstruct final state of τ_{e} τ_{h} and τ_{μ} τ_{h} with more stringent cuts to reduce qcd and W+jet events

 $Z \rightarrow \tau \tau$ shape and normalization from MC and jet backgrounds derived from data using jet \rightarrow tau misidentification

> 487 observed events with 496 \pm 38 predicted from SM processes Set limits by fitting *visible* mass spectrum from $e(\mu) + tau + MET$

> > Exclude $\tan\beta \sim 60$ for $m_{\Delta} = 120$ GeV

HCP Session 4

310/pb

luminosity

CDF Run II Preliminary, 310 pb⁻¹

Tevatron Tau Results 1

Electroweak

 $\sigma(Z \rightarrow \tau \tau)$

CDF: Nucl. Phys. Proc. Suppl. 144, 323-332 (2005) 72/pb
 New conference result with 350/pb shown (pg 24)
 D0: PRD 71, 072004 (pg 20) 226/pb

 $\sigma(W \rightarrow \tau v) (pg 23)$

CDF: Nucl. Phys. Proc. Suppl. 144, 323-332 (2005) 72/pb

Тор

A Measurement of Br(top $\rightarrow \tau \vee q$) CDF: CDF Note 7179 **194/pb**

Tau Trigger

CDF: A. Anastassov et al, Nucl. Instrum. and Methods A 518, 609 (2004)

Tevatron Tau Results 2

New Phenomena / Exotics

Chargino / Neutralino search

D0: D0 Note 4741-Conf 325/pb

R-parity violated SUSY in 2 electron + tau final state

D0: D0 Note 4595-Conf 200/pb

Stop decays to a tau and b-quark

CDF: CDF Note 7398 200/pb

High Mass Z'

CDF: hep-ex/0506034; Submitted to PRL (FERMILAB-PUB-05-251-E) **195/pb** Higgs $\rightarrow \tau \tau$ (pg 25)

CDF: "Search for Neutral MSSM Higgs Bosons Decaying to Tau Pairs", CDF 7676 (2005) **310/pb**

- CDF and D0 have demonstrated ability to make precise EWK measurements with taus
 - Tau efficiency vs tau → jet fake rate
 45% vs 1% cut based methods
 80% vs 5% neural net based methods
 - Systematic uncertainties for tau id ~3% and for tau \rightarrow jet fake rate ~10-20%
- Choice of tau id method dependent on purity achieved through additional event requirements (b-tag, missing energy, topology, etc.)
- Tevatron actively investigating new physics / MSSM tau signatures

Backup Slides

CDF: Z $\rightarrow \tau_e \tau_h$ Event

: 153693 EventType : DATA | Unpresc: 0,1,33,35,36,39,43,13,15,48,49,50,21,23,24,25,57,58,59,28,60 Presc: 0

Mass ($\tau_e + \tau_h + MET$) = 129 GeV/c²

HCP Session 4

CDF Detector

D0 Detector

July 5, 2005

HCP Session 4

D0 Calorimeter

CDF Run I Di-Tau Event

CDF Integrated Luminosity

- Irreducible background to Higgs $\rightarrow \tau \tau$ search
- Isolated electron (E_T>10 GeV/c) and hadronic tau (p_T>15 GeV/c)
- Event topology cuts to reject qcd and W+jet backgrounds
- Cross section consistent with SM expectation

CDF Pi0 Reconstruction

Single tower resolved photon pi0 mass resolution

