

Single Top @ the Tevatron

Anyes Taffard University of Illinois On behalf of the CDF & D0 collaborations

Single top quark (dominantly) produced @ Tevatron via interactions involving a W boson & b quark

→ Rate proportional to $|V_{tb}|^2$

	s-channel	t-channel	Associate tW	Combine (s+t)
Tevatron o _{NLO}	0.88±0.11 pb	1.98±0.25 pb	< 0.1 pb	
LHC σ _{NLO}	10.6±1.1 pb	247±25 pb	62 ⁺¹⁷ -4 pb	
Run I 95% CL limits CDF D0	< 18 pb < 17 pb	< 13 pb < 22 pb		< 14 pb

B. W. Harris et al.: Phys. Rev. D66, 054024 Tait: hep-ph/9909352

Z. Sullivan Phys.Rev.D70:114012

Why Single Top Is So Exciting ?

- Not yet observed... but that's our goal & we are getting close
- Observation of single top allows access to $V_{\rm tb}$ CKM matrix element
- Study top polarisation and V-A structure of EWK top interaction
- Probe b-quark PDF (t-channel)
- Look for physics beyond SM
 - Different sensitivity for s-channel & t-channel
 - 4th generation $(V_{ub}|^2 + |V_{cb}|^2 + |V_{tb}|^2 + |V_{tx}|^2 = 1)$
 - anomalous Wtb couplings
 - FCNC (t→Z/γ c)
 - new charge gauge boson (W': top flavor)
 - etc ...

• Irreducible background to associated Higgs production

Single Top Signature & Backgrounds

Tagging b-jets

 Both CDF & DO use Secondary Vertex b-tagging algorithm to reduce the W+jet background

- •Efficiency ~40% per b-jet
 •Mistag rate (light jets) ~0.5-1%
 •Charm tag rate ~25% of b
- •CDF has now an improved tagger: 15% better efficiency (not used here)
- •D0 tagger performance very similar ~40% eff, ~2% mistag rate

Signal Modeling

- Understanding characteristics of the single top signal is crucial for discovery
- For the s-channel MC generator are in very good agreement with NLO calculations. However the t-channel is not well modeled.
- uses MADEVENT while 💵 uses CompHEP
 - Generate 2 \rightarrow 2 and 2 \rightarrow 3 separately and merge them to reproduce the b P_T spectrum from NLO (ZTOP)

Single Top Kinematics

Pseudo-Rapidity

3000 =

1000 =

100 120

 P_{T} [GeV]

Pseudo-Rapidity n

ᇲ볃

-0.5

 $\cos\theta$ (lepton-dquark) in top frame

P_T

Polarisation

Background Modeling

- W+jets (Wbb, Wcc, Wc...)
 - Challenging background both in term of quantification & shape variable
 - Estimated from data & MC -
 - Heavy Flavor fractions (b,c) from ALPGEN -
 - Normalization from data before b-tagging -
- Top pair production
 - Contribution from lepton+jets -
 - Estimated from Pythia (CDF) and Alpgen (DO) -
- Multijet events ٠
 - Jet misidentified as lepton & semi-leptonic decay of HF jets (bb) -
 - Estimated from data
- WW, WZ, $Z \rightarrow \tau \tau$
 - Estimated from Pythia (CDF) and Alpgen (DO)

q'

CDF Search Strategy

- Lepton (e/ μ): P_T>20 GeV, $|\eta|<1.0$
- Jets: Exactly 2, E_T >15 GeV, $|\eta|$ <2.8
- Missing E_T : E_T >20 GeV
- Top mass cut: 140<M_{lvb}<210 GeV/c²
 - Not applied to s-channel for separate search
- @ least 1-b-tag jet
 - For 1 btag channel, leading jet E_T>30 GeV

To discover

To see new physics

- Combine (s+t) use H_T distribution
- Joint likelihood
 - t-channel: use 1 tag $Q_{\text{lepton}} \times \eta_{\text{forward jet}}$ distribution
 - s-channel: counting of 2 tag events

<u>CDF</u> Analysis After Selection

Sample compositi	ion	t-channel	s-channel
Process	Combined	1-tag	2-tag
t-channel	2.8 ± 0.5	2.7 ± 0.4	0.02 ± 0.01
s-channel	1.5 ± 0.2	1.1 ± 0.2	0.32 ± 0.05
$t\bar{t}$	3.8 ± 0.9	3.2 ± 0.7	0.60 ± 0.14
non-top	30.0 ± 5.8	23.3 ± 4.6	2.59 ± 0.71
Total Background	33.8 ± 5.9	26.5 ± 4.7	3.19 ± 0.72
Total Expected	38.1 ± 5.9	30.3 ± 4.7	3.53 ± 0.72
Observed	42	33	6

Systematic Uncertainties

Fractional change in $\boldsymbol{\epsilon}_{\text{evt}}$

Source	t-channel	s-channel	Combined
JES	$^{+2.4}_{-6.7}$	$^{+0.4}_{-3.1}$	$^{+0.1}_{-4.3}$
ISR	± 1.0	± 0.6	± 1.0
\mathbf{FSR}	± 2.2	± 5.3	± 2.6
PDF	± 4.4	± 2.5	± 3.8
Generator	± 5	± 2	± 3
Top quark mass	$^{+0.7}_{-6.9}$	-2.3	-4.4
$\epsilon_{trig}, \epsilon_{ID}, luminosity$	± 9.8	± 9.8	± 9.8

Event detection efficiency

- s-channel 1.06±0.08 %
- t-channel 0.89±0.07 %

Main systematics

b-tag ε	7%
Luminosity	6%
M_{top}	4%
JES	4%

CDF distributions

t-channel

Combined search

<u>CDF Limits</u>

- Maximum likelihood fit to data
 - Background allowed to float but constraint to expectation
 - Shape of systematic uncertainties included in likelihood

Single Top t-Channel Posterior Probability Density Single Top s-Channel Posterior Probability Density Brobability Density p(3) 0.3 0.3 0.2 0.2 0.15 Probability Density p(β) Posterior Probability Density p(B) 70 80 1 0.09 162pb 0.08 L dt = 162 pb⁻¹ 0.07 L dt = 162 pb⁻¹ 0.06 $\sigma_{_{Single Top}}$ < 17.8 pb at 95% C.L σ_{s-ch} < 13.6 pb σ_{t-ch} < 10.1 pb 0.05 0.04 0.03 0.1 β₉₅ = 15.4 $\beta_{95} = 6.2$ 0.02 $\beta_{95} = 5.1$ 0.2 0.05 0.01 0 0 $\frac{14}{\beta_{st}} = \sigma/\sigma_{SM}$ 2 6 8 2 8 10 12 4 10 12 20 4 6 16 5 10 15 25 30 35 $\beta = \sigma / \sigma_{SM}$ $\beta = \sigma / \sigma_{SM}$ Combined t-channel s-channel Expected Observed Expected Observed Expected Observed 12.1 pb 11.2 pb 17.8 pb 13.6 pb 10.1 pb 13.6 pb

Cross section upper limits (pb) @ 95% CL: \mathcal{L} =162 pb⁻¹

DO Search Strategy

- Lepton (e/ μ): P_T>15 GeV, $|\eta_{e(\mu)}|<1.1$ (2.0)
- Jets: 2≤N_{jets}≤4, E_T>15 GeV, |η|<3.4, E_T^{J1}> 25 GeV Missing E_T: ∉_T>15 GeV
 - Require 1 or ≥2 b-tags
 - t-channel: @ least 1 non b-tagged jet
- Combined several discriminating kinematic variables in 2 neural networks (Wbb & tt→l+jets)
- Use 2D output in a likelihood

DO analysis after selection

Sample composition

S/B~2-3%

Source	s-channel search	t-channel search
tb	5.5 ± 1.2	4.7 ± 1.0
tqb	8.6 ± 1.9	8.5 ± 1.9
W+jets	169.1 ± 19.2	163.9 ± 17.8
$t\bar{t}$	78.3 ± 17.6	75.9 ± 17.0
Multijet	31.4 ± 3.3	31.3 ± 3.2
Total background	287.4 ± 31.4	275.8 ± 31.5
Observed events	283	271

MC Systematic Uncertainties

Components affecting normalization			
$\sigma_{t\bar{t}}$ theory and mass	18%		
$\sigma_{s(t)}$ theory	15%(16%)		
Jet Fragmentation	6.0%		
ℓ ID	4.1%		
Branching Fraction	2.0~%		
Components affecting shape and normalization			
SVT modeling, single (double) tag	10 %(20 %)		
Jet Energy Scale	10~%		
Trigger Modeling	6%		
Jet ID	5%		
Jet Energy Resolution	4%		

Event detection efficiency

s-channel	2.7±0.2	%

t-channel 1.9±0.2 %

Total systematics	=1 tag	≥2 tags
Signal acceptance	15%	25%
Background Sum	10%	26%

Bkg domninated by non-top events (~70%)

Some will improve with increased luminosity Result is statistically limited

Discriminating variables

3 broad categories; 25 distributions

Extract limit from 2D binned likelihood Bayesian approach including bin by bin systematic & correlations

Data

0 limits

Cross section upper limits (pb) @ 95% CL: £=230 pb⁻¹

17

- Advanced analysis technique required to make observation soon ! (Neural network, Kinematic fitter/Matrix element, optimize likelihood etc...)
 - Identify variables that give good S/B separation
 - Need accurate modeling of signal & backgrounds
- Optimized analysis:
 - Increase acceptance, better lepton ID.
 - Improve b-tagger
 - To reduce W+jets background
 - Increase purity (reduce charm tagging)
 - Combine different b-tagger into NN (secondary vertex, jet Probability, Soft Muon tagging)
- Improve systematic uncertainties
 - JES
 - Accurate models for backgrounds (shape & normalization)
 - Drive HF fraction estimate & understanding of systematic uncertainties

Lots of room for improvement... Both collaborations taking an aggressive approach

Challenging... (hence fun) But not impossible

Summary

- Current results set promising single top limits...
 starting reaching sensitivity to new physics.
 - Phys. Rev D71, 012005

Mep-ex 0505031

Submitted to PLB

95% C.L. limits Observed (Expected)

Channel	CDF [pb]	D0 [pb]
	(162 pb ⁻¹)	(230 pb ⁻¹)
s+†	<17.8 (13.6)	
S	<13.6 (12.1)	<6.4 (4.5)
†	<10.1 (11.2)	<5.0 (5.8)

- Challenging analysis
 - Need advance analysis technique to observe single top in the next 1-2 years
 - Plenty of room for improvement
- But, observation of single-top is feasible in Run II

Polarisation

•Study top quark spin correlations

•Physics with ~100% polarized top quarks

Angle between light quark and lepton

top moving direction

Analysis approches

- Three analysis methods •

Cut-Based Neural Networks

- Each using the same structure: •
 - Optimize separately for s-channel and t-channel
 - Optimize separately for electron and muon channel (same variables)
 - Focus on dominant backgrounds: W+jets, tt
 - W+jets train on tb-Wbb and tqb-Wbb
 - tt train on tb tt \rightarrow /+ jets and tqb tt \rightarrow /+ jets
 - Based on same set of discriminating variables
 - → 8 separate sets of cuts/networks/trees

<u>Cut based analysis</u>

- · Cuts on sensitive variables to isolate single top
 - Optimize s-channel and t-channel searches separately
 - Loose cuts on energy-related variables:

 $p_T(jet1_{tagged})$ $H(alljets - jet1_{tagged})$ $H(alljets - jet1_{best})$ $H_T(alljets)$ $M(top_{tagged})$ M(alljets) $M(alljets - jet1_{tagged})$ \sqrt{s}

<u>Decision Tree analysis</u>

- For each event, gives probability for an event to be signal
- Widely used in social sciences, recently also in HEP
 - GLAST, Miniboone object ID (see Byron Roe W&C)

- Send each event down the tree
- Each node
- corresponds to a cut
- Pass cut (P): right
- Fail cut (F): left
- A leaf corresponds to a node without branches
 - Defines purity = $N_S / (N_S + N_B)$
- Training: optimize Gini improvement

- Gini = $2 N_{\rm S} N_{\rm B} / (N_{\rm S} + N_{\rm B})$

Output: purity for each event

u

For t-channel use kinematical boost

In proton-antiproton collisions:

- top production: light quark jet goes in p direction
- anti-top: light quark jet goes in *p-bar* direction

Correlation between

- pseudorapidity of untagged jet η
- lepton charge Q

\Rightarrow **Q**. η distribution asymmetric for t-channel

Likelihood Function

Joint likelihood function for $Q.\eta$ distribution in the 1-tag sample and number of events in 2-tag samples:

- 4 processes: t-channel (j=1), s-channel (j=2), ttpair and non top (j=3, 4)
- μ_k : mean number of events in bin k of Q. η distribution
- μ_d : mean number of events in the 2-tags sample
- n_k, n_d: observed number in data
- the background is allowed to float but is constrained to SM predictions
- 7 sources of systematic uncertainties

Shape Uncertainties κ 's

For a given systematic effect *m*, κ_{jmk} 's are obtained from the difference between the shifted H_T template and the default H_T template, divided by the default bin contents α_{jk}

$$\begin{aligned} \frac{\text{ted mean in bin k:}}{\mu_{k} = \sum_{j=1}^{3} \sigma_{j} \cdot \left\{ \prod_{i=1}^{7} \left[1 + |\delta_{i}| \cdot \left(\varepsilon_{ji+} H(\delta_{i}) + \varepsilon_{ji-} H(-\delta_{i})\right) \right] \right\} & \text{i,m} \\ \alpha_{jk} \cdot \left\{ \prod_{m=1}^{7} \left[1 + |\delta_{m}| \cdot \left(\kappa_{jmk+} H(\delta_{m}) + \kappa_{jmk-} H(-\delta_{m})\right) \right] \right\} & \overset{\text{g}}{\text{k}_{jmk}} \end{aligned}$$

k = bin index j = process index i,m = syst. effect index $\epsilon_{ji+/-}$ = acc. shifts $\kappa_{jmk+/-}$ = shift, bin k

Event Display

The least "non-top-like" event ($H_T = 475 \text{ GeV}, M_{lvb} = 173 \text{ GeV}/c^2$):

Run: 153389 · Event: 361345 •CEM Electron E_T=50.9 GeV, η =0.24 •MET=25.7 GeV, Phi=5.6

•Jet1 E_T =173.8 GeV, η =0.45

•Jet2 E_T=149.8 GeV,
$$\eta$$
 =-0.13

Svx L1,L2/L3 L00

