

High-p_T Isolated Electrons & Photons at the Tevatron Collider Experiments

Gregory Veramendi

(University of Illinois, Urbana-Champaign)

for the CDF and DØ collaboration

<u>Outline</u>

- 1. CDF & D0 Detectors
- 2. Electron & Photon ID
- 3. Calibrating the Detector
- 4. Analysis Tools

- Electrons lose energy through bremsstrahlung and photons through e⁺e⁻ pair production
 - Energy loss proportional to atomic number of absorber
 - Use high Z material as EM absorber (lead, uranium, etc.)
 - → Have single (e) or no track (γ)
- Easy to separate from jets
 Important for triggering
- Used in most analyses at hadron colliders
 EWK top New Physics com

→ EWK, top, New Physics, some b

• Tracking specs

B Field	1.4 T
Outer radius	~1.3m
N measurements	96 + 7-8 Si

• EM Calorimeter specs

Technology	Scintillator / Pb
$\eta - \phi$ segmentation	0.1 x 0.25
Lateral Segmentation	2: EM & HAD
Depth	~20 X ₀
Preshower	Scintillating Pads
Shower Max	Strips & Wires (pitch 1.5 – 2cm)

Electron and Photons at the Tevatron

DØ **Detector**

• Tracking specs

B Field	2.0T
Outer radius	~0.5m
N measurements	16 + 3-4 Si

• EM Calorimeter specs

Technology	LAr / Ur
$\eta - \phi$ segmentation	0.1 x 0.1
Lateral Segmentation	9/8 layers
	(first 4:EM)
Depth	~20 X ₀
Preshower	Scintillating
	Strips
Shower Max	3 rd Layer
	(0.05 x 0.05)
Gregory veramenui	Electron and Photons

at the Tevatron tron and Pho

HCP Conference, July 6th , 2005 p. 4

ID: Electromagnetic Clusters

- Calorimeter towers projective nominal collision point
- Cal. Towers clustered into

→ $\Delta\eta$ - $\Delta\phi$ ~ **0.2x0.2**

 e/γ shower contained in EM calorimeter

 → EM calorimeter
 → EM calorimeter
 → EM calorimeter
 → EM calorimeter
 → EM calorimeter
 → EM calorimeter
 → EM calorimeter
 → EM calorimeter
 → EM calorimeter
 → EM calorimeter
 → EM calorimeter
 → EM calorimeter
 → EM calorimeter
 → EM calorimeter
 → EM calorimeter
 → EM calorimeter
 → EM calorimeter
 → EM calorimeter
 → EM calorimeter
 → EM calorimeter
 → EM calorimeter
 → EM calorimeter
 → EM calorimeter
 → EM calorimeter
 → EM calorimeter
 → EM calorimeter
 → EM calorimeter
 → EM calorimeter
 → EM calorimeter
 → EM calorimeter
 → EM calorimeter
 → EM calorimeter
 → EM calorimeter
 → EM calorimeter
 → EM calorimeter
 → EM calorimeter
 → EM calorimeter
 → EM calorimeter
 → EM calorimeter
 → EM calorimeter
 → EM calorimeter
 → EM calorimeter
 → EM calorimeter
 → EM calorimeter
 → EM calorimeter
 → EM calorimeter
 → EM calorimeter
 → EM calorimeter
 → EM calorimeter
 → EM calorimeter
 → EM calorimeter
 → EM calorimeter

ID: Shower Profile

ID: Tracking

• Tracking important part of electron/photon ID

- Requiring or vetoing a high p_T track reduces background by x10
- Tracking more difficult in forwardregions
- Very sensitive to the amount of material
 - → Radiation reduces track p_T
 - Converted photons are lost
 - Uncertainty in acceptance dominated early W/Z cross section mesurements
 - > 5.5% X₀ uncertainty in material gave a 4.7% uncertainty in the acceptance for Z→ee

Track Matching Efficiency

ID: Isolation

Meen RMS

ee

X (cm)

40 45 50 lepton E_τ /GeV

Underflow Overflow

 Isolation is really an event 0.09 topology cut W→ev Very good at rejecting jets faking electrons Both DØ and CDF make similar cuts \rightarrow CDF: Iso(R<0.4)/E_T(e/ γ) → DØ: Iso(R=0.2-0.4)/E_T(R<0.4) Efficiency of new vtx corr. iso cut 0 7 8 9 8 1 CDF sensitive to energy Corr for N.Vert. leakage and brems that fall outside of cluster 1 Vertex 2 Vertex Both experiments ▲ 3 Vertex No corr 0.2 △ 4 Vertex sensitive to extra interactions 25 30 35

Advanced Techniques

- Likelihoods and NN
 - Can improve both efficiency and rejection
- Many DØ analyses use likelihood
 Combines EMF, Iso, H-Matrix, —> Track Iso...
- Only a few high-p_T CDF analyses use a Likelihood for e/γ ID
 - Improves Eff. ~5% and reduces Bkg. ~40%!
 - Studies with NN show x2 improvement in bkgd reduction!
- Must be fairly confident of control samples
 - Need stability and understand correlations

HCP Conference, July 6th , 2005 p. 9

Electron and Photons at the Tevatron

HCP Conference, July 6th , 2005 p. 10

2 η_e

2.5

Local y (cm) 5 22

20

15

10

5

0

Calorimeter-seeded tracking

131 -0.07026

1.898

Looking for e in b-jets

• Variable PDF's make likelihood

Differences for photon ID

- Track veto

 → ≤1 track with p_T<1GeV
 → Σp_T(R=0.4)<2 GeV
 → Both scale with energy

 Shower shape better
- Shower shape better than electrons
 → No brems
 - → Use SMX χ²
- No 2nd SMX cluster
 → Works well: E_T < 40 GeV
- Reject beam halo and cosmics
 - → EM timing important for photon + ∉_T final states

nsec

vents,

Trigger strategy: Signal

- Both experiments use a 3 level trigger
 - L1 very basic objects, single tower and track thresholds, and combinations
 - L2 has calorimeter clusters, and some basic variables: EMF, Isolation, SMX
 - L3 close to full reconstruction

• CDF:

- L1: EM tower with matching track
- → L2: higher E_T EM cluster with matching track
 - > Lower E_T use SMX
- L3: offline electron with very loose ID

• DØ:

→ L1: 1 or 2 EM towers

has track capability

- → L2: EM Cluster
- L3: offline electron with very loose ID

- Need to measure and monitor detector performance
- "W/Z-notrack":EM Cluster +
 → Require ∉_T or second EM Cluster
 → Check tracking
- 8 GeV electrons
 - Used for calibrating calorimeter
- W/Z triggers with analysis kinematic cuts, but no ID cuts
 - > Check electron/photon ID
- Many backup triggers with prescales to understand trigger cuts at each level

Calibrations

- Outline
 - Calorimeter energy
 - Material in tracking volume
- Most important for EWK precision measurements

 \rightarrow e.g. : m_w \rightarrow See Mark Lancaster's talk

Material from E/P

- Use radiative tail of E/P to measure material
- Gives average material
- Can be combined with energy-loss measurements of muons (J/ψ) to give roughly type of material
 - CDF discovered it was missing Copper cables this way

Material: X-raying the detector

signed Radius(cm)

- Conversions can indicate location of material in detector
 - Normalized to inner cylinder of tracking chamber
 - Overall normalization difficult
 - Acceptance and efficiency depend on r
- Useful to find missing (or misplaced!) pieces

Energy calibrations I

Energy calibrations II

- Generally calibrated to Z→ee resonance
- E/P can give another handle

E scale vs E_r(e) from W's

CDF RUN II

PRELIMINARY

Track momentum scale is measured with muons from J/ψ, Υ, and Z→μμ

 χ^2 / ndf

Prob

p0

1.02

1.015

1.01

1.005

0.995

0.99

Electron and Photons at the Tevatron

50

E_T (GeV)

4.85622/8

0.772827

4.08793e-05 ± 9.47021e-05

E/p (W→ev)

1.5

Analysis Tools

- Outline
 - Electron and Photon ID efficiency
 - Electron and Photon fake rates
- Important for all measurements

→ e.g. : search for Extra Dimensions

See Heather Gerberich's talk

Electron ID efficiency

- Measure in $Z \rightarrow$ ee decays
 - Select one tight electon and second EM cluster
- Several quality classes
 - Depends on analysis
 - → 80-95% efficient
 - Flat in most variables
 - Juncertainties < 1%</p>
- Very small corrections for background, and biases
 - Very robust
- Conversion removal
 - Sensitive to material
 - Removes ~73% conversions and ~2.3% real electrons
 - Inefficiency is ~5% without trident removal

Gregory Veramendi

Electron and Photons at the Tevatron

HCP Conference, July 6th , 2005 p. 22

 $E_{\tau}(\gamma)$

Photon ID efficiency

- No nice diphoton resonance
- Start from Z→ee
 - Standard electron for 1st leg
 - Make a tight E/P cut on 2nd leg (minimize brems)
 - Gives efficiency for isolation and shower-shape variables
 - Account for backgrounds and "tridents"
- Conversion Rate in Simulation tuned to data
 - Knowledge of material important

Background Estimation: e

(በ)

0.05

• Sources:

- b decays semi-leptonically
- → π^0 & π^{\pm} give EM and track
- Photon conversions
- Composition depends on cuts
- Fake rates are common way to measure backgrounds
 - Measure rate of jets and electrons in jet triggered events
 - Apply to sample with signal topology with jet instead of electron
- Generally, jet background is small, but has large uncertainty (~25-50%)
 - → Absolute rates ~ 10⁻³-10⁻⁴

Background Estimation: γ

- Major Source $\rightarrow \pi^0 \rightarrow \gamma\gamma$
- Fake rate measured in similar way to electrons
 - Prompt photons need to be removed
 - Rates from different jet samples are compared for systematic
 - → If jets are E_T-ordered, find rate is different for 1st, 2nd, and lower E_T jets
- Rates ~ 5×10^{-4} for high E_T

- Calibrating the detector
 - Important for measurements like W mass and other precision EW measurements
- Understand material in detector
 - Directly impacts photon and electron detector acceptance
 - Degrades many electron ID variables
 - Shower profile, isolation-type variables, track momenta cuts, conversion removal
- Instantaneous luminosity
 - Degrades performance of Isolation and had/em type cuts
- Our pre-data simulations greatly underestimated both occupancy and material effects

Conclusions

- Electrons and photons are among the strongest handles we have at hadron colliders
 - Trigger and identification well established
 Improvements are always being worked on
- Identification efficiencies are 80-90%, while jet fake rates are 10⁻³-10⁻⁴
- Knowledge of the material and the impact of multiple interactions important, especially at future LHC experiments