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Introduction to the computing model

● General features of the computing problem

– Computing required to produce physics scales 
(approximately) linearly with:

● Total number of events
– CPU for analysis

● Total data volume
– Disk, tape, networks

● Average event logging rate
– CPU for reconstruction

– For some analyses, integrated luminosity is important 
scaling parameter
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Introduction to the computing model

● Expected delivered luminosity

We are here

Expect to be here

“baseline”

“fallback”
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Introduction to the computing model

● Data volume vs. time

– Total = 1.2 PB
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Estimated volume of
about 5 PB by 2009
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Introduction to the computing model

● Specifics of the computing problem                               
               

FY Int L. Evts Peak rate
(fb^-1) (10^9) (MB/s) (Hz)

A
ct

ua
l 2003 0.3 0.6 20 80

2004 0.7 1.1 20 80

E
st

im
at

ed

2005 1.3 2.4 40 220

2006 2.2 4.7 60 360

2007 3.9 7.1 60 360

2008 6.0 9.5 60 360

2009 8.2 12 60 360

Data logging rate triples
from 2004 to 2006

Event rate quadruples due 
to increased compression

Expect ~1010 events by end of run

Computing problem is not static
— Becomes more difficult with time



F.D. Snider CDF Computing and Event Data Models HCP 2005, July 7, 2005 6

CDF computing model

● General strategy of the solution

– Automate, centralize control of common computing tasks
● Full event reconstruction
● Large-scale MC production, reconstruction
● Stripping of most physics datasets

– Distribute computing hardware as needed
● Platform for user analysis and MC production

– Provide simple interfaces to allow user access to broad 
range of computing resources

● Present stable, common interfaces to users
● Automate file tracking, delivery, job parallelization
● (Eventually) provide access to remote resources via grid tools
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Major hardware systems

Robotic 
Tape Storage

CDF Detector

Reconstruction

Simulation
and Analysis

CDF Analysis 
Farm (CAF) 

User Desktops

Remote CAFs

Production Farm

User Analysis

Job development,
Ntuple analysis

User job
submission
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Analysis data flow

Robotic 
Tape Storage

CDF Detector

CDF Analysis 
Farm (CAF) 

User Desktops

Remote CAFs

Production Farm

Disk 
Cache
~370 TB
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Analysis data flow

Robotic 
Tape Storage

CDF Detector

CDF Analysis 
Farm (CAF) 

User Desktops

Remote CAFs

Production Farm

Disk 
Cache

W
AN

Local disk
cache
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Analysis data flow

Robotic 
Tape Storage

CDF Detector

Simulation
and Analysis

CDF Analysis 
Farm (CAF) 

User Desktops

Remote CAFs

Production Farm

Disk 
Cache

User Analysis

W
AN



F.D. Snider CDF Computing and Event Data Models HCP 2005, July 7, 2005 11

Data handling system

Robotic 
Tape Storage

Disk 
Cache

W
AN
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Data handling system

● Most important, technically demanding of the systems

– Largest fraction of development effort

– Performance and fault tolerance are paramount

● Role of data handling system

– Data cataloging and archiving

– Provide data access:  locate and “deliver” files upon request
● Handles details of copying from tape or another disk, checking 

file integrity, opening high BW channel to file, latencies, etc.
● Underlying transactions are transparent to user

– Typically does not need to know details such as  file names

● Two major components:  “SAM” and “dCache”
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Data handling system

● dCache                                                                      
(Joint project of DESY, FNAL)

– “Virtualizes” disk used for local cache
● Data on tape or distributed across many local servers
● Exact location hidden from user

– Used only this component and data catalog for > 2 years

Robotic 
Tape Storage CDF Analysis 

Farm (CAF) 

Disk 
Cache

dCache

Files always 
appear to be 
on disk
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Data handling system

Data from dCache
Typ. 10―25 TB/day

Data to/from archive
Typ. 5-10 TB/day

B
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2002 Now

7/2004 Now
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Data handling system

● SAM:  Sequential Access via Metadata

– New to central systems at CDF. Used at D0 for several yrs.

● Why?

– Designed for highly distributed data
● Better suited to increasing use of remote computing

– A better tool to handle large datasets (needed this long ago)

● Simple tools to define datasets based upon metadata
● File tracking information

– Location, delivery and “consumption” status
● Allows process automation

– Already used to run production farm
– Will become central tool in user processing



F.D. Snider CDF Computing and Event Data Models HCP 2005, July 7, 2005 16

Robotic 
Tape Storage

CDF Detector

Simulation
and Analysis

CDF Analysis 
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Reconstruction

Production Farm
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Production farm

● Objectives

– Perform full reconstruction of all data
● First step in all analyses

– Deliver results as soon as possible after data taking

● The most predictable of the computing problems

– Can be completely automated

– Required computing is easily calculated
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Event processing time and
input event size depend upon
type of trigger and instantaneous 
luminosity
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Production farm

● Processing strategy

– Provide monitoring data within 3 days of data taking

– Full reconstruction of all events with final calibrations
● Deliver within 1 ― 2 months of data taking (new this year)
● Requires processing all data 1.3 times in that time

● Average event properties

– Reconstruction time: 2.7 sec/event (1 GHz PIII)

– Event rate: 130 Hz (FY05) to 220 Hz (FY06+)

– Event size: 150 kB (input), 120 kB (output)

● Conclusion:  Need about 150 duals

– Catching up now using about 100

Includes raw data
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Production farm

● Processing history through 2004
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Production farm

● Other features of production farm

– Currently a total of 1.2 THz PIII equivalent (480k SpecInt2k)

– Farm processing automated using SAM

– Job management based upon analysis farm infrastructure 
● Dynamically expand into analysis farm resources as needed

– System can, in principle, be distributed to remote sites
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CDF Analysis Farms (CAF)

● Primary analysis platform for the experiment

– User analysis (the least predictable computing problem)
● Ntuple creation
● Ntuple analysis
● Many other CPU intensive calculations

– Semi-coordinated activities
● Secondary, tertiary dataset production
● MC event generation, detector simulation and reconstruction

● CAF contains the bulk of available computing capacity

● Computing in clusters located around the world
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Current CPU and disk resources in CAFs
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TorontoFNALCondorCAF

RutgersItalyUSCD

TaiwanJapanMIT

Utilization is high as soon as a site
becomes available.

400 active users

FNAL:
> 10k jobs for
~100 users/day
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CDF Analysis Farms

● Usage patterns at FNAL from summer of 2004

– CPU by task
● 50% of load in analysis of                                                              

production output files
● 20% in MC
● Balance in ntuple analysis,                                                            

other tasks

– CPU by physics topic
● B-physics group consumes                                                

majority of CPU cycles

CondorCAF usage by Task
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CDF Analysis Farms

● User analysis on prod data

– Average of 0.75 sec/event

– About 20% use > 1 sec/evt
● 40% of total prod data CPU

– Event read + unpacking                                                        
+ minimal analysis 

● 0.06 sec/event

● What processing contributes to the tail?

– Track re-fitting and vertex finding/fitting
● Follows from needs of B physics and use of precision tracker

– Both require full analysis framework
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CDF Analysis Farms

● User's experience

– Select site

– Specify dataset

– Startup script

– Output location

– Press “submit”

User's context tarballed,
sent to execution site

Same interface can be used 
for grid submission
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CDF Analysis Farms

● User's experience

– Monitoring
● CPU, memory by process
● Execution, return status

– Control
● Hold, resume jobs
● Change execution priority for a process
● Copy output to any machine with write access

– Quasi-interactive features
● Look at log file on a worker node
● Directory listing in user's relative path
● Connect debugger to a running process 

S
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Robotic 
Tape Storage

CDF Detector
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Production Farm
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Grid migration plans
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Grid migration plans

● Reasons to move to a grid computing model

– Need to expand resources at FNAL and remote CAFs
● Expect factor of eight more integrated luminosity
● Will need to perform more analysis on remote CAFs

– Most remote resources in dedicated pools
● Only limited expansion possible in this model
● May not be able to maintain access to existing resources

– Resources at large
● Estimated 30 THz currently in LHC and US-HEP grids
● Small fraction of opportunistic access can be significant
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Grid migration plans

● Basic plan

– Adopt incremental, staged approaches when possible
● Partial solutions now to bridge time to develop for the long-term

– Allow various levels of service to solve different problems
● Predictable computing (production) vs. user analysis

– Target European and US grid infrastructure aligned with 
other efforts at FNAL

– Retain existing user interface
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Grid migration:  interim solution to eliminate 
dedicated resources

Desktop

Non-dedicated
worker nodes

(e.g., LCG)
CDF dedicated

nodes (CAF)

CAF headnode Gatekeeper

Remote site

CAF submits grid
jobs that install
batch system on
generic worker
nodes.
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Grid migration:  interim solution to eliminate 
dedicated resources

Desktop

Non-dedicated
worker nodes

(e.g., LCG)
CDF dedicated

nodes (CAF)

CAF headnode Gatekeeper

Remote site

Non-dedicated
nodes register
as part of CAF,
take jobs directly
from headnode.

Next step:
Eliminate need for
any dedicated
resources at grid
site.
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Grid migration plans

● On-going efforts

– “Condor glide-in” for CAF 
● Remote CAF at CNAF in Italy uses this
● Demonstrated opportunistic use of 1.3 THz of CPU

– Re-implementing CAF using native grid tools
● Eliminates need for any dedicated resources at grid site
● Target user analysis applications
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Event data model

●  What is an EDM?

– Set of structures for raw and reconstruction data
● All stored within some larger, shared data structure 

– Associated interfaces, utilities to manipulate, serialize

– Typically operates within a specific analysis framework

● Most simple example of an EDM

– Ntuples
● CDF physics groups supports several standardized ntuples

– Vastly more efficient than all user-defined ntuples
– Often created from data in coordinated fashion
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Event data model

●  Some features of EDM at CDF

– Event data in fully featured C++ objects
● Raw data objects are self-describing

– Serialization automated for raw data objects

– Objects cannot be modified once entered into event record
● Retains history of event

– Various general containers provided
● Arrays of objects or references to objects

– Utilities to locate objects based upon various criteria

– Many “features” to prevent some common errors

● Ex:  difficult to have 3rd party change data beneath you
● Many, despite benefits, are disliked by users
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Event data model

● Common features to all objects in EDM

– Unique ID number

– Description string

– “Process name” string

– Print method, equivalence operators

– Function to serialize data
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Event data model

● Lessons from current experience (my own opinions) 

– Too much functionality in data objects
● Ex:  track objects

– Include topological fitting interface, complex class heirarchy
– Neither is used as intended

● Can really be simple structures

– EDM effectively tied to single analysis framework
● Reconstruction tools that access EDM usable only in this context

– Tracking, track re-fitting, vertex finding and fitting...
● Problem largely stems from built-in serialization functionality
● Should instead decouple reconstruction from any context

– Write reconstruction interfaces to use simple structures
– Make serialization an implementation detail
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The best things we did

● Developed CAF and simple submission, monitoring 
tools for user analysis. 

– Made using large computing resources easy.

● Adopted structured data types for event data

● Established, maintained good physical design of 
software

● Defined lots of sensibly defined production output 
datasets

● Wrote a fast reconstruction 
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Summary

● CDF computing model has functioned well to provide 
needs to current time

– Users can effectively utilize 5.6 THz of CPU distributed in 
many locations

– Need to provide more user-level automation

● Much work to do to ensure systems will scale through 
the end of the run

● Grid migration will become an increasingly important 
component of computing model

● Simple, context independent EDM has good features 
for users
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Summary

● Computing becomes more complex with the volume 
of data to be analyzed

– Robust, scalable data handling is difficult

– Distributed computing and emerging grid technologies

– Other new technologies...

● Important to focus on making it easy for users to 
perform analysis within this hostile environment

– Provide tools and automation to deal with large datasets 
and other common tasks

– Keep primary user interfaces — EDM, data handling, job 
submission tools — simple

– EDM, reconstruction, analysis tools should be context indep.
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The end
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Backup slides
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Introduction to the computing model

● Run II delivered luminosity

Rate into high-Pt datasets
increasing by factor of
two every year

Expected to increase 
another factor of 2.5 by
FY2007
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Introduction to the computing model

● Run II delivered, logged luminosity

Over 1 fb-1 delivered

About 850 pb-1 acquired
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Computing requirements

●  
Assumed conditions Total requirements

FY Int L. Evts Peak rate Ana Reco Disk Tape I/O Tape Vol
(fb^-1) (10^9) (MB/s) (Hz) (THz) (THz) (PB) (GB/s) (PB)

03A 0.30 0.6 20 80 1.5 0.5 0.2 0.2 0.4

04A 0.68 1.1 20 80 2.3 0.7 0.3 0.5 1.0

05E 1.2 2.4 35 220 7.2 1.4 0.7 0.9 2.0

06E 2.7 4.7 60 360 16 1.0 1.2 1.9 3.3

07E 4.4 7.1 60 360 26 2.8 1.8 3.0 4.9

A = actual (FNAL only) E = estimated


