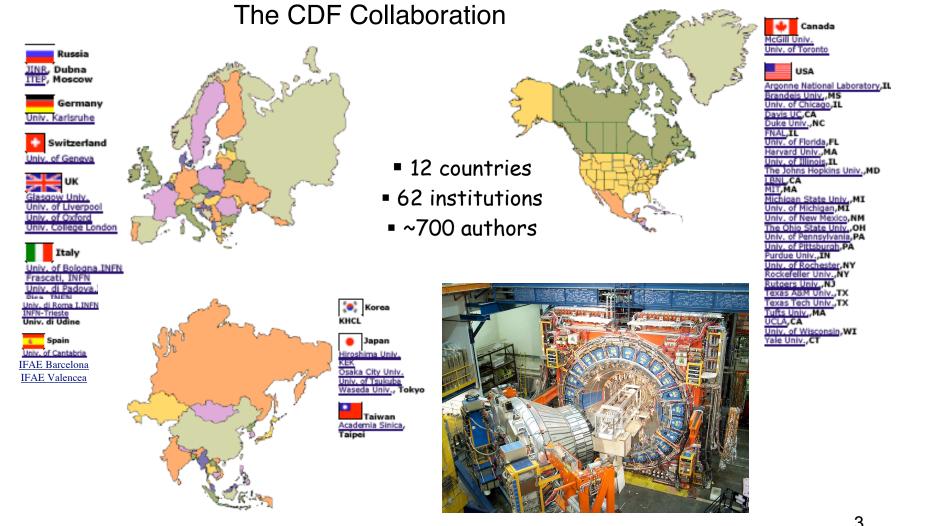

Diboson Physics at the Tevatron

Hadron Collider Physics July 5, 2005

Al Goshaw , Duke University for the CDF and $D \ensuremath{\varnothing}$ Collaborations

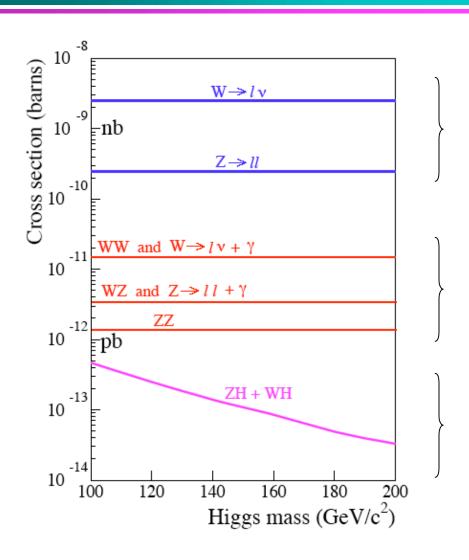

The DZero Collaboration

- 19 Countries
- 86 institutions
- ~620 physicists

Outline

- Introduction
- Survey of recent measurements
 - ➤ W(*l*ν) γ
 - > W Z studies using leptonic decays
 - > WW and WZ studies using leptonic and hadronic decays
 - ≻ Z(*l l*) γ
- Summary and outlook

Introduction


Boson production at the Tevatron

- The CDF and DØ collaborations are completing the first round of Run II studies of γ, W, Z and H production.
- Inclusive W and Z bosons
 - > W/Z production and decay properties (Serban Protopopescu's talk)
 - W mass and width (Mark Lancaster's talk)
- Vector boson pair production (this talk)

γγ	WW
Wγ	WΖ
Ζγ	ZZ

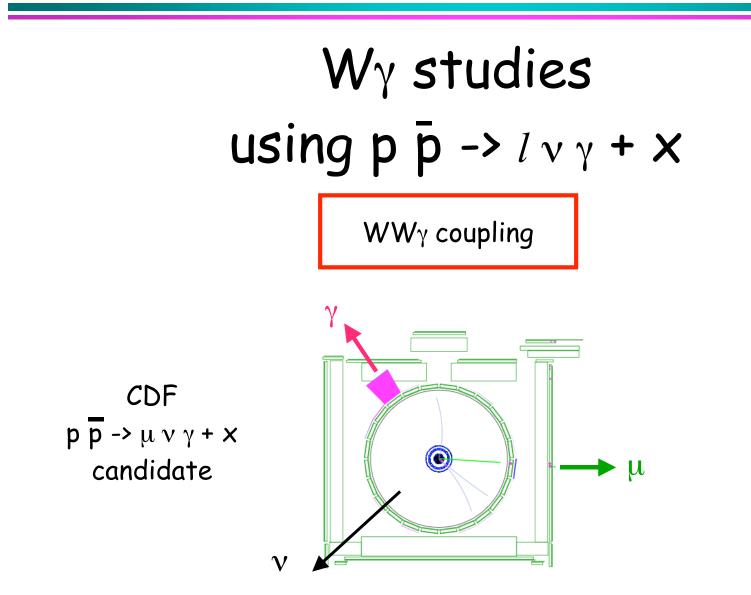
- Higgs boson searches (Anna Goussiou talk)
 - WH, ZH, H->W*W, SUSY Higgs

p \overline{p} production cross sections of W and Z bosons at $\int s = 1.96$ TeV

High statistics W/Z inclusive

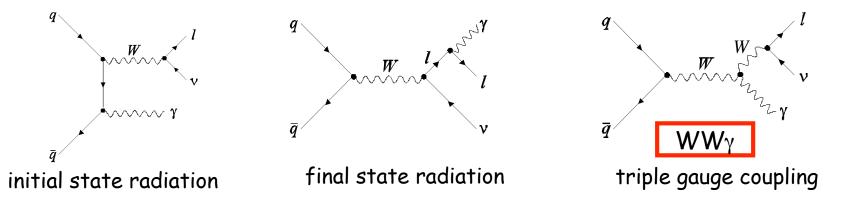
Lower statistics di-bosons $E_T(\gamma) > 10 \text{ GeV} \quad \Delta R(l\gamma) > 0.7$

Limits on H production


Di-boson physics at the Tevatron

- The study of di-boson production provides a rich source of electroweak Standard Model tests, is sensitive to new physics signatures, and opens a window into the challenges faced in searches for the Higgs boson.
- The CDF and DØ experiments have completed the first analysis phase
 > Results reported here are based upon 200-400 pb⁻¹ of data.
 - > Goal is to update with ~ 1 fb⁻¹ of data by winter conferences 2006
 - > Ultimate sensitivity based upon 4-8 fb⁻¹
 - \succ And then continuation at the LHC ...
- There are separate talks on electron, photon and muon identification at CDF and DØ, and I will not dwell on details here
 - Electron/photon ID at the Tevatron (Greg Veramendi's talk)
 - > Muon ID at the Tevatron (Jeff Temple's talk)

- I. Compare di-boson (Wy, Zy, WW, WZ, ZZ) production properties to Standard Model predictions and measure agreement/deviations.
- 2. Use anomalous coupling parameters as the metric for evaluating the sensitivity to new physics. This assumes the new physics appears as deviations of the W and Z boson from Standard Model point particles. There are of course other sources of new physics that would appear in di-boson production -- perhaps the most likely sources of a discovery.
- 3. Use the advantage of having both q q and q q' collisions to separate out specific triple gauge couplings where possible:
 - $\begin{array}{l} & q \ \overline{q}' \rightarrow W^* \rightarrow W \ \gamma & WW \ \gamma \ coupling \ only \\ & q \ \overline{q}' \rightarrow W^* \rightarrow W \ Z & WWZ \ coupling \ only \\ & q \ \overline{q} \ \rightarrow Z/\gamma \rightarrow W \ W & mix \ of \ WW \ \gamma \ and \ WWZ \ couplings \\ & \gamma \ \overline{q} \ \overline{q} \ \rightarrow Z/\gamma \rightarrow Z \ \gamma & mix \ of \ ZZ \ \gamma \ and \ ZZ \ couplings \\ & \gamma \ \overline{q} \ \overline{q} \ \rightarrow Z/\gamma \rightarrow Z \ Z & mix \ of \ ZZ \ \gamma \ and \ ZZ \ couplings \\ \end{array} \right\} absent \ in \ SM$


Approach to di-boson studies

- 4. For the triple gauge coupling studies use (primarily) leptonic decays of the W and Z:
 - $\succ W \gamma \quad \rightarrow l \nu \gamma$
 - $\succ \quad \mathsf{Z} \quad \gamma \quad \twoheadrightarrow \quad l^{+} \quad l^{-} \quad \gamma$
 - \blacktriangleright W⁺ W⁻ -> $l^+ \nu l^- \nu$
 - \succ WZ \rightarrow $l' v l^+ l^-$
 - $\succ Z Z \longrightarrow l^{+} l^{-} l^{\prime +} l^{\prime -} \text{ and } l^{+} l^{-} v v$
 - > where $l = e \text{ or } \mu$
- 5. Extend measurements to W/Z hadronic decay channels
 - > Specific channels: $W/Z(jet-jet) + \gamma$ and $W/Z(jet-jet) + W(l_v)$
 - > Useful for calibration/improvement of di-jet mass resolution
 - > Similar to searches for Higgs boson in W/Z H(b b) searches

$p \bar{p} \rightarrow l v \gamma + x Production$

The $l \vee \gamma$ final states have contributions from quark and lepton bremsstrahlung processes and the direct production $W\gamma \rightarrow l \vee \gamma$

- The first two diagrams involve W boson coupling only to fermions, and are assumed to be described by the Standard Model.
- The third diagram depends on the WWγ coupling
- Therefore the production $p \overline{p} \rightarrow l v \gamma + x$ is a measure of this coupling

$p \bar{p} \rightarrow l v \gamma + X Production$

- Under the assumption of Lorentz and electromagnetic gauge invariance, for massless fermions, the WW γ coupling can be described in terms of four parameters.
- The effective Lagrangian is [Baur and Berger PRD 41, 1476 (1990)] ٠

$$\mathcal{L}_{WW\gamma} = -ie \left[\left(W_{\mu\nu}^{\dagger} W^{\mu} A^{\nu} - W_{\mu}^{\dagger} A_{\nu} W^{\mu\nu} \right) + \kappa_{\gamma} W_{\mu}^{\dagger} W_{\nu} F^{\mu\nu} + \lambda_{\gamma} / M_{W}^{2} W_{\lambda\mu}^{\dagger} W_{\nu}^{\mu} F^{\nu\lambda} + 2 \text{ more } CP \text{ violating terms} \right]^{\dagger}$$
Strong constraints from limits on the neutron's electric dipole moment

The magnetic dipole and electric guadrapole moments of the W boson are given by:

$$\mu_W$$
 = (1 + κ_γ + λ_γ)e/2M_W and Q_W = -(κ_γ - λ_γ)e/M_W²

Solutions In the SM at tree level $\Delta K_{\gamma} = K_{\gamma} - 1 = \lambda_{\gamma} = 0$. Estimates of loop corrections are small: $|\Delta K_{\gamma}| = 0.008$ and $|\lambda_{\gamma}| = 0.002$.

$p \bar{p} \rightarrow l v \gamma + X Production$

Destructive interference of the TGC diagram with the initial state bremsstrahlung process suppresses the $l \sim \gamma$ cross section. For p p collisions at $\int s = 1.96$ TeV the SM expectations are:

inclusive W and Z boson production: while for $E_{\tau}(\gamma) > 10 (100) \text{ GeV}$, $\Delta R(l\gamma) > 0.7 \qquad \sigma[l\nu\gamma] / \sigma[ll\gamma] \sim 4.3 (1.5)$

Solution amplitude zeros also occur when $\eta(\gamma) - \eta(l^{*}) \sim -0.3$. [see Baur, Errede, + Landsberg, PRD 50, 1917 (1994)]

Deviations from these SM predictions can be expressed in terms of:

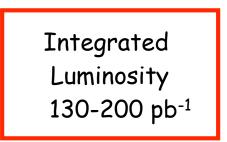
> $\Delta K_{\gamma} = \Delta K_{o\gamma} / (1 + s / \Lambda^2)^2$ $\lambda_{\gamma} = \lambda_{0\gamma} / (1 + s/\Lambda^2)^2$

where Λ is the scale of the new physics and $\int s$ is the W_{γ} invariant mass.

SM, no det effects -2 -1 0 1 2 on Charge ' (Photon Rapidity

 $\sigma[W(lv)] / \sigma [Z(ll)] \sim 10.7$

Data selection for $l \vee \gamma$ events


Solution Events triggered on high E_T/P_T central electron/muon

Selection of leptons similar to inclusive W/Z measurements

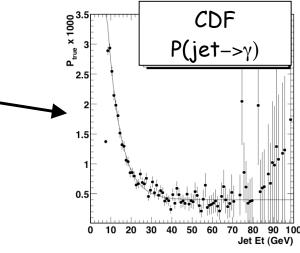
	charged leptons	neutrinos	<i>l</i> √ transverse mass GeV/c ²
electron channels	E _T > 25 GeV	⊭ _T > 25 GeV	30 - 120 (CDF) 40 -> (DØ)
muon channels	P _T > 20GeV/c	⊭ _T > 20 GeV	30 - 120 (CDF) None (DØ)

Selection of photons

central:	$ \eta $ < ~ 1.0 photon
energy:	E _T > 7 - 8 GeV
isolated:	Δ R(<i>l</i> γ) > 0.7

15

Backgrounds in $l \vee \gamma$ events


Backgrounds are dominated by W(l v)+jets and $Z/\gamma(l l)$ +jets with jet -> fake photon

- Use jet-triggered data samples to measure the fake rates
- > Correct for real photon content (γ +jet events) in jet data
- Apply this to jets in W/Z+jet data

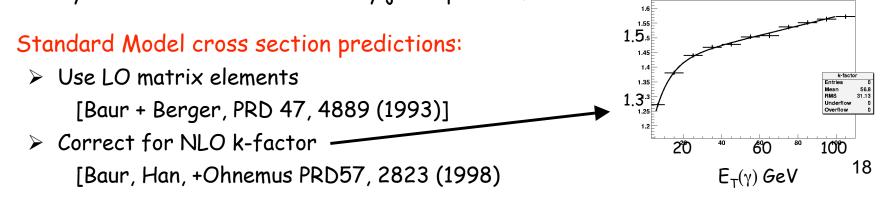
- $P(jet -> fake \gamma) \sim 3 \times 10^{-3} (E_T \sim 10 GeV)$ ~ 4×10^{-4} (E_T > 50 GeV)
- Other backgrounds determined from SM generators
 - Cross-talk between $Z(l l)\gamma$ and $W(l v)\gamma$ channels
 - Seed-down from W -> τv decays

backg. source	e ν γ	μνγ
W + jets	59.5 <u>+</u> 18.1	27.6 <u>+</u> 7.5
τνγ	1.5 <u>+</u> 0.2	2.3 <u>+</u> 0.2
<i>l l γ</i>	6.3 <u>+</u> 0.3	17.4 <u>+</u> 1.0
total backg.	67.3 <u>+</u> 18.1	47.3 <u>+</u> 7.6
data	195	128

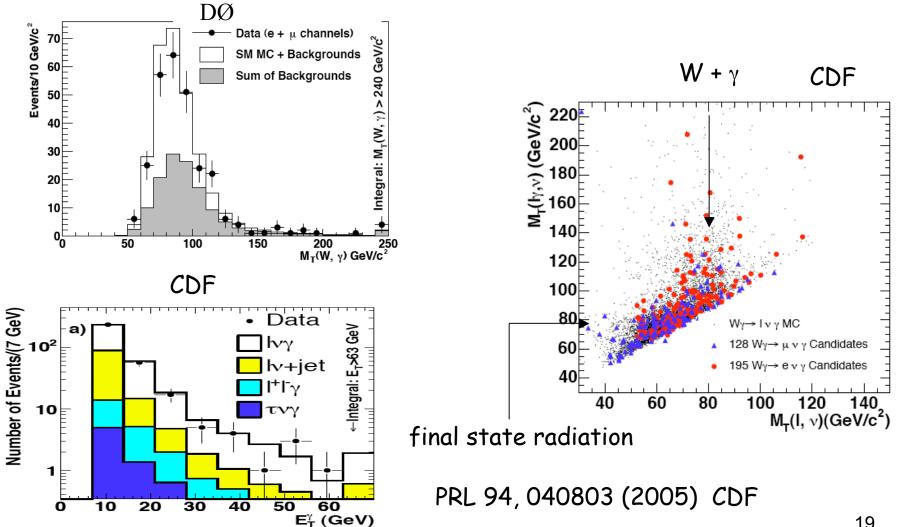
Signal acceptance (A) and efficiency (ϵ) for $l \lor \gamma$

- Solution Electron and muon ID efficiencies are evaluated from data using Z -> ee and $\mu\mu$ decays.
- Photon ID efficiencies are determined from a combination of data (use electrons as proxies for photons) and GEANT-based detector simulations.
- Geometric acceptances determined from SM event generators and detector simulations.
 - Correct for W-> l v decay phase space
 - > Quote cross sections for $E_T(\gamma) > 8$ GeV and $\Delta R(l \gamma) > 0.7$

	e ν γ	μνγ
background	60.8 <u>+</u> 4.1	71.3 <u>+</u> 5.2
data	112	161
Αχε	0.023 <u>+</u> 0.001	0.044 <u>+</u> 0.002


Comparison of p $\overline{p} \rightarrow l \vee \gamma + X$ to Standard Model predictions

 $\sigma(p \ \overline{p} \rightarrow l \lor \gamma + X)$ at $\int s = 1.96$ TeV with $\Delta R(l \gamma) > 0.7$


	N _{data} (e + μ)	σ(<i>l</i> ν γ) exp.	$\sigma(l \lor \gamma)$ SM theory	E _T (γ) cut
CDF	323	18.1 <u>+</u> 3.1	19.3 <u>+</u> 1.4	> 7 GeV
DØ	273	14.8 <u>+</u> 2.1	16.0 <u>+</u> 0.4	> 8 GeV

Measured cross sections:

- > Systematic and statistical errors ~ equal plus 6% luminosity error
- Systematic errors dominated by jet -> photon fake rate

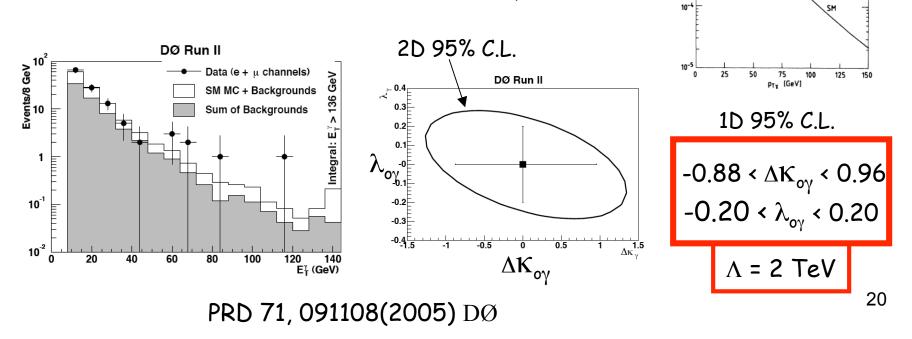
Comparison of $l \vee \gamma$ signal to Standard Model predictions

Using $l \vee \gamma$ events to put limits on WW γ couplings (DØ)

SM prediction. Non-zero ΔK_{γ} or λ_{γ} lead to enhancement of high E_{T} photons above the SM prediction.

∫s=1.8 TeV

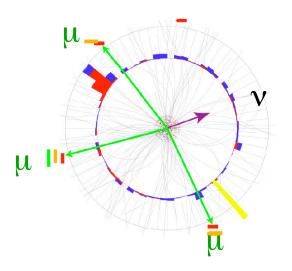
λ=0.5


Λ**κ**=1

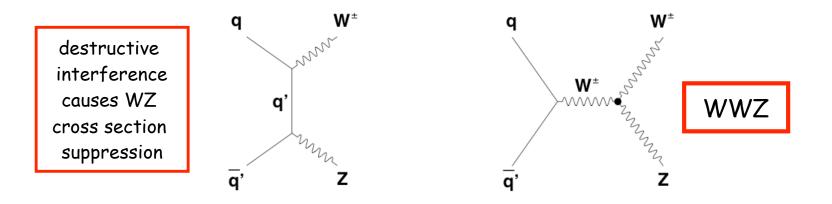
10-2

[pb/GeV]

B da∕dp₁


- Suppress event with FSR by selecting events
 with M_T(l v γ) > 90 GeV/c²
- Solution Use binned-likelihood fitting $E_T(\gamma)$ on $\Delta K_{o\gamma}$ vs $\lambda_{o\gamma}$ grid

WZ studies using $p\bar{p} \rightarrow l' \vee l^+ l^- + X$


WWZ coupling

DØ p p -> μ ν μ μ + x candidate

p p -> WZ + X Production

The next logical step in unraveling the di-boson anamalous couplings is to measure WZ production. This isolates the WWZ vertex.

Under the same assumptions* made for the WWγ coupling the effective Lagrangian is [Haigwara, Peccii and Zeppenfeld, NP B282 253 (1987)]:

$$\mathcal{L}_{WWZ} = -ie \operatorname{cot} \theta_{W} \left[g_{1}^{z} \left(W_{\mu\nu} W^{\mu} Z^{\nu} - W_{\mu} Z_{\nu} W^{\mu\nu} \right) + K_{z} W_{\mu} W_{\nu} Z^{\mu\nu} + \lambda_{z} / M_{W}^{2} W_{\lambda\mu} W_{\nu}^{\mu} Z^{\nu\lambda} \right]$$

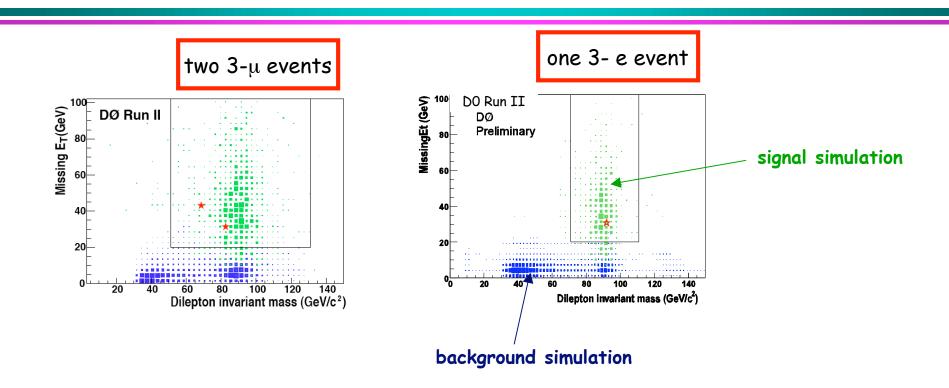
* in addition to dropping CP violating terms, excude a term which conserves CP but violates both C and P.

In the SM at tree level $g_1^z = K_z = 1$ and $= \lambda_z = 0$.

Data selection for WZ events

- The SM expectation for p p W Z + x at $\int s = 1.96$ TeV is ~ 4.0 pb
- But the branching ratios reduce the usable signal:

WZ decay channel	Fraction %	
q q 'q q + q q vv	61.1	
qqlv	22.4	
qq'll	6.9	- } ← useful (see below)
<i>l</i> ννν	6.4	buried in inclusive W/Z
l v l l	3.2	cleanest channel


Restricting l = e or μ , the total branching ratio for $p \overline{p} \rightarrow l' v l^{+} l^{-} + x \sim 1.4\%$.

Acceptance x efficiency varying from 10 to 15% (without BR's)

 \succ Particle ID efficiencies use Z -> ee/µµ data

> Acceptance use PYTHIA event generator plus detector simulations

Data selection for $l' \vee l^+ l^-$ events

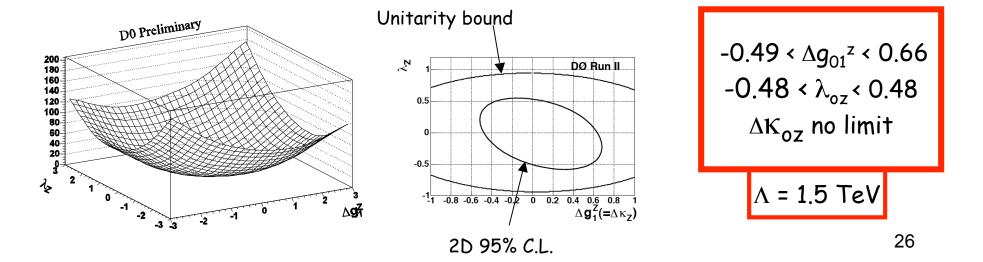
- Backgrounds with S/B ~ 3-4
 - > Dominated by jet -> fake lepton in W/Z + jet/ γ events (from data)
 - Feed through from WW, ZZ, t t determined from SM event generators plus detector simulations.

Comparison of WZ (and ZZ) to Standard Model predictions using all leptonic decays

 $\sigma[p \bar{p} \rightarrow WZ (ZZ) + x]$ at Js = 1.96 TeV corrected for W/Z branching ratios

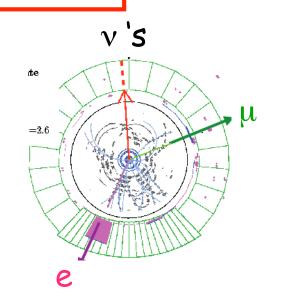
	N _{data}	N _{backgrond}	SM theory	Experimental	95%
			cross section (pb)	cross section (pb)	C.L.
CDF(WZ+ZZ)	3	1.02 <u>+</u> 0.24	5.0 <u>+</u> 0.4	4.3 +5.0 - 2.6	< 15.2 pb
DØ (WZ)	3	0.71 <u>+</u> 0.08	3.65 <u>+</u> 0.26	4.5 +5.1 - 3.3	< 13.3 pb

- SM theory predictions at NLO with MCFM
- Experimental details can be found at:
 - DØ hep-ex/0504019 (Submitted to PRL)
 - > CDF PRD 71, 091105 (2005)


Bottom line: consistent with the SM

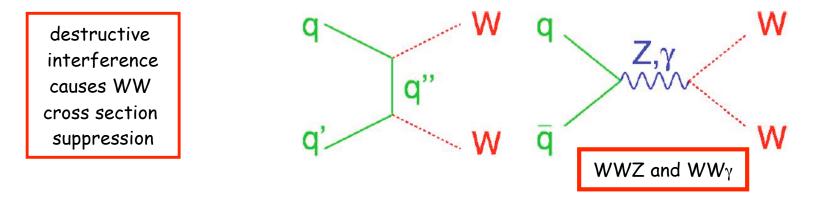
Integrated Luminosity ~ 300 pb⁻¹ (DØ) ~ 200 pb⁻¹ (CDF)

Using $l' \vee l^+ l^-$ events to put limits on WWZ couplings (DØ)


- Solution Non-zero Δg_1^z , ΔK_z or λ_z lead to enhancement of high Et W/Z above the SM prediction. Here $\Delta g_1^z = g_1^z 1$ and $\Delta K_z = K_z 1$.
- Hold one anamolous coupling parameter at zero and form a 2D grid of predictions versus the other two [Hagiwara,Woodside,Zeppenfeld LO generator].
- Use dipole form factors as for Wγ analysis:

1D 95% C.L.

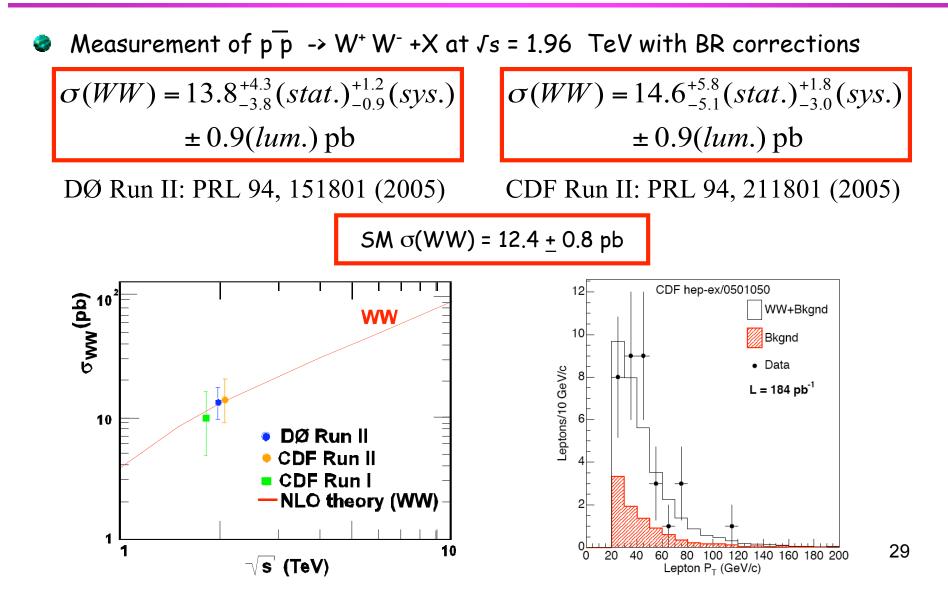
Mix of WW γ ,WWZ couplings


CDF pp->µvev+x candidate

27

$p \bar{p} \rightarrow W^+ W^- + x Production$

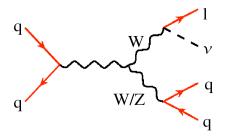
The WWγ (WWZ) couplings introduce the parameters discussed above [Haigwara, Woodside and Zeppenfeld, PRD 41, 2113 (1990)]:

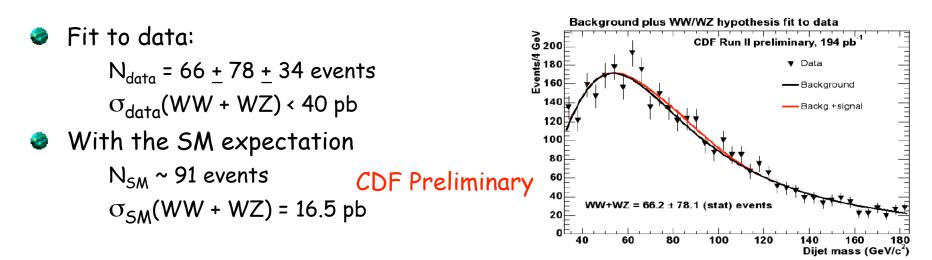


- The SM expectation for p p > W W +X at Js = 1.96 TeV is ~ 12.4 pb
- To date CDF and DØ have used channels.:
 - *l* ν *l* ' ν with *l* , *l* ' = e or μ
 BR ~ 4.6% small BR, good S/B
 - > q q' l v with l = e or μ BR ~ 29% good BR, poor S/B

WW	Fraction %	
99' 9 9'	46.2%	
qq'lv	43.5%	
l v l' v	10.3%	

28


Comparison of W⁺W⁻ to Standard Model predictions using l⁺ v l⁻ v decays

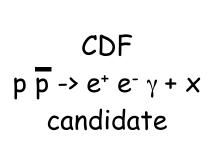

W⁺W⁻ and W Z studies using $l v q \bar{q}$ decays

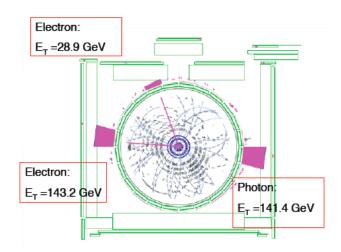
The channel p $\overline{p} \rightarrow W(lv) + W/Z(q\overline{q})$ has been studied by CDF

- Advantages: larger branching ratio
- > Disadvantages: much higher backgrounds
- ➢ BUT anomalous signals appear at high E_T of the W where backgrounds lower

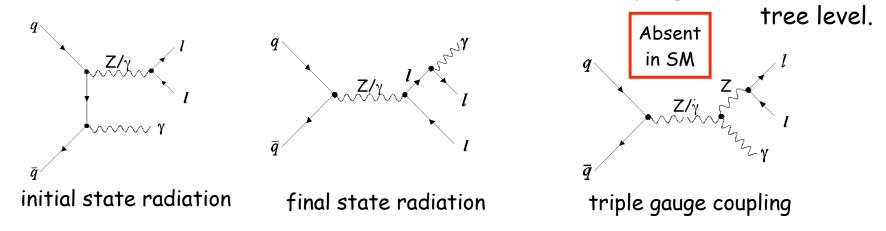


W + jet jet QCD background is constrained by fitting to dijet mass spectrum around M_W plus M_Z peak.


W⁺W⁻ and W Z studies using $l \vee q \bar{q}$ decays


- Fits to anomalous couplings require assumptions here since 5 parameters contribute to WW plus WZ production: Δg_1^z , $\Delta \kappa_z$, λ_z , $\Delta \kappa_\gamma$, and λ_γ
- Solution Assume $\Delta g_{01}^{z} = 0$ and let $\Delta \kappa_{o} = \Delta \kappa_{oz} = \Delta \kappa_{o\gamma}$ and $\lambda_{o} = \lambda_{oz} = \lambda_{o\gamma}$
- The P_T of the W(l v) is found to be the most sensitive distribution since anomalous VV pairs are produced at high P_T .

Zy studies using p \overline{p} -> $l^+ l^- \gamma$ + x


 $ZZ\gamma$ and $Z\gamma\gamma$ couplings

$p \bar{p} \rightarrow l^{+} l^{-} \gamma + x Production$

Within the confines of the SM as the ZZy and Zyy couplings are zero at

- Therefore beyond the SM affects appear as deviations from bremsstrahlung radiation.
- Under the assumptions of Lorentz and electromagnetic gauge invariance, the anomalous coupling parameters in this case are:

$$h_i^{V} = h_{io}^{V} / (1 + s/\Lambda^2)^n$$
 where $V = s$ -channel γ or Z
 $\int s = Z\gamma$ invariant mass
 $i = 1,2$ (CP violating), 3,4 (CP conserving)
==> 8 parameters [see e.g. Baur and Berger PRD 47, 4889 (1993)] ³³

Data selection for $l^+ l^- \gamma$ events

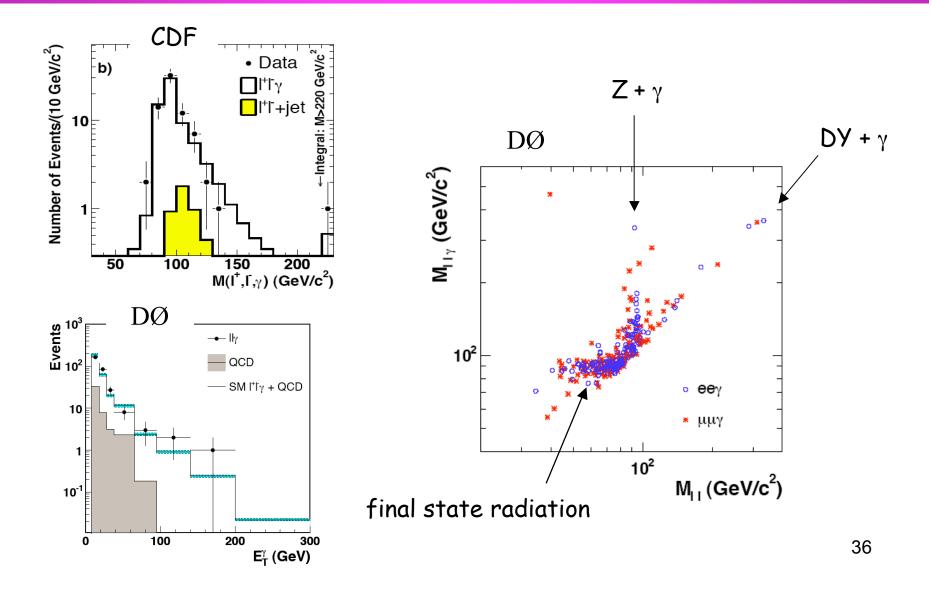
- Solution Events triggered on high E_T/P_T central electron/muon. The offline lepton and photon cuts are similar to those for W_Y events (see page 14).
- DØ selects events with $M(l^+ l^-) > 30 \text{ GeV/c}^2$, CDF 40 130 GeV/c²
- The only significant source of Background is Z + jet events with a jet faking a photon (see p 16).

backg. source	ееү	μμγ
Z + jets	23.6 <u>+</u> 2.3	22.4 <u>+</u> 3.0
data	138	152

~	300 pb ⁻¹ (DØ)
	S/B ~ 6

backg. source	eeγ	μμγ
Z + jets	2.8 <u>+</u> 0.9	2.1 <u>+</u> 0.6
data	36	35

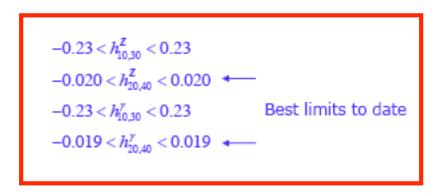
Comparison of $l^+ l^- \gamma$ signals to Standard Model predictions

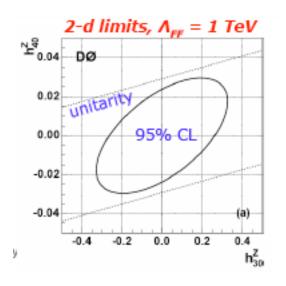

 $\sigma(p \overline{p} \rightarrow l l \gamma + X)$ with $\Delta R(l \gamma) > 0.7$

	N _{data} (e + μ)	σ(<i>l l</i> γ) exp.	σ(<i>l l γ</i>) theory	E _T (γ) GeV	M(<i>l l</i>) GeV/c ²
CDF	71	4.6 <u>+</u> 0.6	4.5 <u>+</u> 0.3	> 7	> 40
DØ	290	4.2 <u>+</u> 0.5	3.9 <u>+</u> 0.2	> 8	> 30

CDF PRL 94, 041803 (2005)

DØ hep-ex/0502036 (submitted to PRL)


Comparison of *l⁺ l⁻ γ* signal to Standard Model predictions



Using $l^+ l^- \gamma$ events

to put limits on ZZy and Zyy couplings (DØ)

- No deviations from SM predictions, but very clean data samples can be used to put limits on anomalous couplings.
- Form factors imposed to preserve unitarity with n= 3 for i = 1,3 and n = 4 for i = 2,4 (see form on page 31).
- Solution Use binned-likelihood fitting to $E_T(\gamma)$ on 2D grid of $(h_{10}^V \text{ vs } h_{20}^V)$ and $(h_{30}^V \text{ vs } h_{40}^V)$. Set 95% C/L. for $\Lambda = 1$ TeV. (D0 PRL and hep-ex/0502036).

Summary and Outlook

	Channel ($l = e, \mu$)	(o _{data} -o _{SM})/o _{SM}
Tevatron Run II	W γ [<i>l</i> ν γ]	-0.06 <u>+</u> 0.16 CDF
p p at √s = 1.96 TeV		-0.06 <u>+</u> 0.16 DØ
200-400 pb ⁻¹	Ζγ[ll γ]	+0.02 <u>+</u> 0.13 CDF
		+0.08 <u>+</u> 0.13 DØ
	WW [<i>l</i> v <i>l</i> v]	+0.17 <u>+</u> 0.42 CDF
		+0.10 <u>+</u> 0.32 DØ
All rates and	cross section limits	σ _{data} (95% C.L.)/ σ _{SM}
kinematic distributions	WZ [<i>l</i> v <i>l l</i>]	3.3 DØ
are consistent with		
SM predictions	WZ + WW [$l v qq$]	2.4 CDF
	$ZW + ZZ [l \ l \ (l \ v \ or \ v \ v)]$	3.0 CDF

(table uses nominal SM predictions with no theory uncertainties)

Analyses just starting on individual channels

Coupling	limits at 95% CL	Energy scale Λ
WWγ	- 0.88 < Δκ _{ογ} < 0.96	2 TeV
	- 0.20 < λ _{ογ} < 0.20	
WWZ	- 0.49 < ∆g ₀₁ ^z < 0.66	1.5 TeV
	- 0.48 < λ _{oz} < 0.48	
ΖΖγ	h ^γ _{10,30} < 0.23	1 TeV
	h ^y _{20,40} < 0.019	
ZZZ	h ^z _{10,30} < 0.23	1 TeV
	h ^z _{10,30} < 0.020	
WWZ and WW γ	- 0.42 < Δκ _o < 0.58	1.5 TeV
	- 0.32 < λ _o < 0.35	

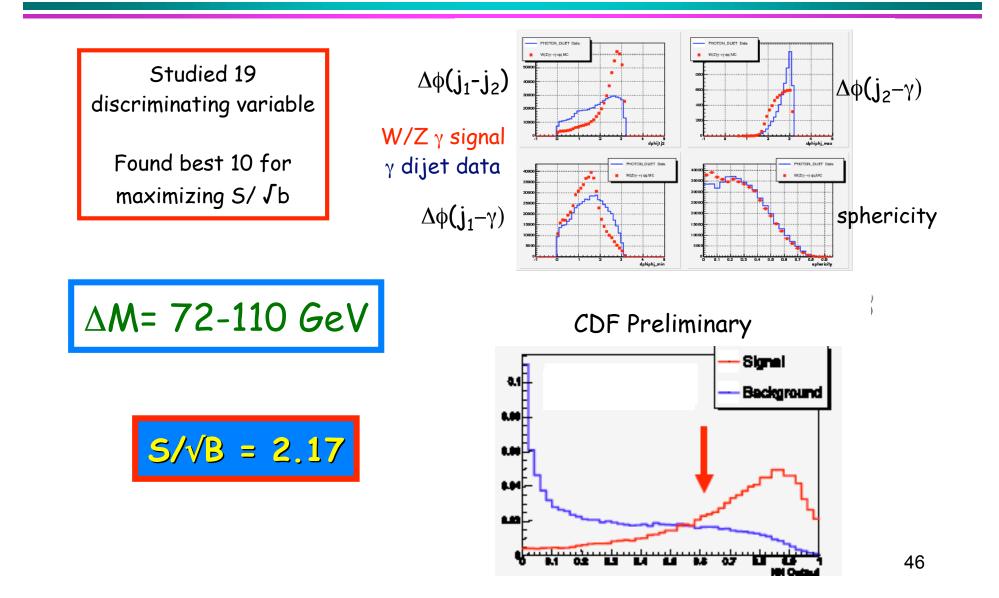
In future will combine channels and CDF+D0 measurements

SUMMARY: Physics beyond the SM

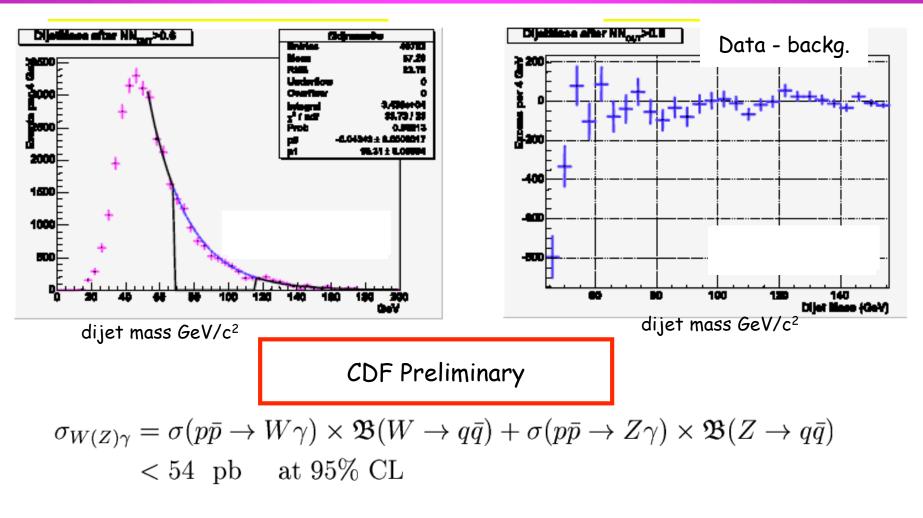
- New physics sources (anomalous couplings, new fermions or gauge bosons) contribute to the high P_T tails of W/Z/γ production.
- At high P_T most sources of background (jets faking photons and leptons) fall rapidly.
- Therefore the sensitivity to new physics is almost entirely statistics driven.
- The Tevatron is ramping up according to its design plan, and the CDF and DØ detectors are operating with good efficiency.
- The data sets presented here represent 2-10% of the potential of the Tevatron.
- We hope to set more than limits ...

Backup Slides

Searches for $W/Z \rightarrow q \overline{q}$ using $W/Z \gamma$ events


Searches for p p̄ -> W/Z(q q̄) + γ Motivation

- New physics searches using dijets depend critically on a good understanding of the jet-jet invariant mass resolution.
- One calibration source is W/Z -> q q -> jet jet
- This requires a trigger that does not bias the W/Z mass peak, and allows low mass side bands for background subtraction.
- Solution States of the type $W/Z(q \overline{q}) \gamma$ and $W/Z(q \overline{q}) W(l \nu)$ allows a trigger selection based upon the a high Et photon or lepton, and provides an unbiased look at the jet-jet spectrum for extraction of $W/Z \rightarrow q \overline{q}$.
- Also, the W/Z(q q) W(l v) channels are very similar to those used for Higgs searches in H(b 石) W(l v) and provide a SM calibration line.


$W/Z(q\bar{q})$ signal in W/Z_{γ} events

Neural net used for S/B separation

No W/Z γ signal seen with 182 pb⁻¹ of data

(SM prediction 20.5 pb)