b-tagging @ CDF: experience, performance, lessons for LHC hadron collider physics symposium 2005

> Daniel Jeans, CNAF & Roma1 for the CDF collaboration

- introduction
- detector
- primary vertex
- b-tagging algorithms
- future directions
- conclusions

introduction

for the heaviest, and therefore least studied, SM particles (top & Higgs), theory favours decay to b quarks.

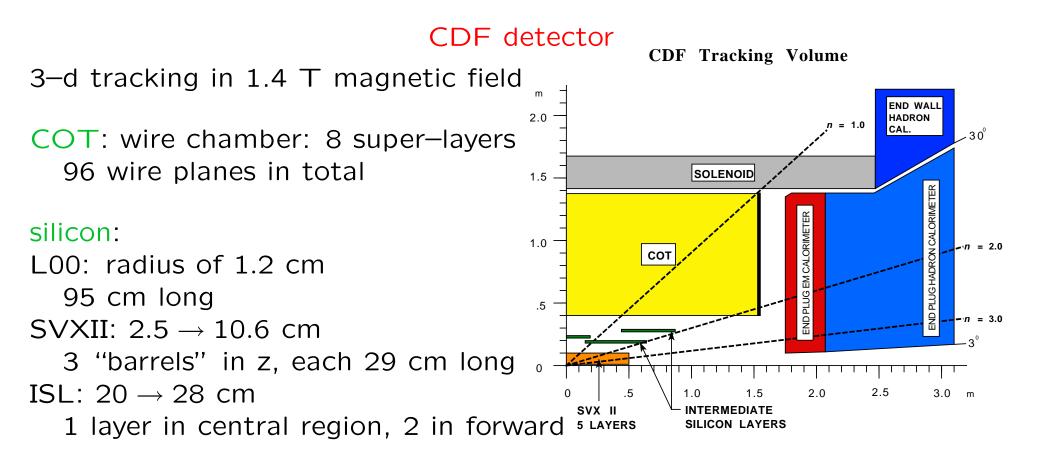
large t/H mass \Rightarrow decay products get large boost in lab \Rightarrow high energy hadronic jet containing B hadron

```
B hadron characteristics:
```

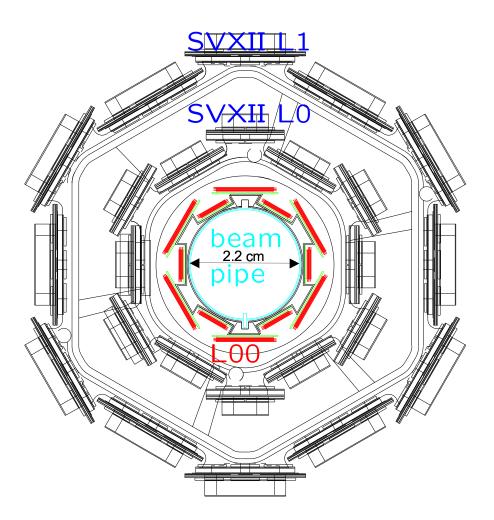
long mean lifetime ($\sim 1.5 ps$)

large mass (~ $5.3GeV/c^2$)

large leptonic decay ratio (per lepton flavour:


 \sim 11% directly, \sim 20% including daughter decays)

complications:


charmed hadrons also relatively massive & long lived some strange hadrons have long lifetime: K_s, Λ

TeV

Lepton ID: muon chambers, EM calorimeter

silicon detectors

L00: radiation tolerant single sided

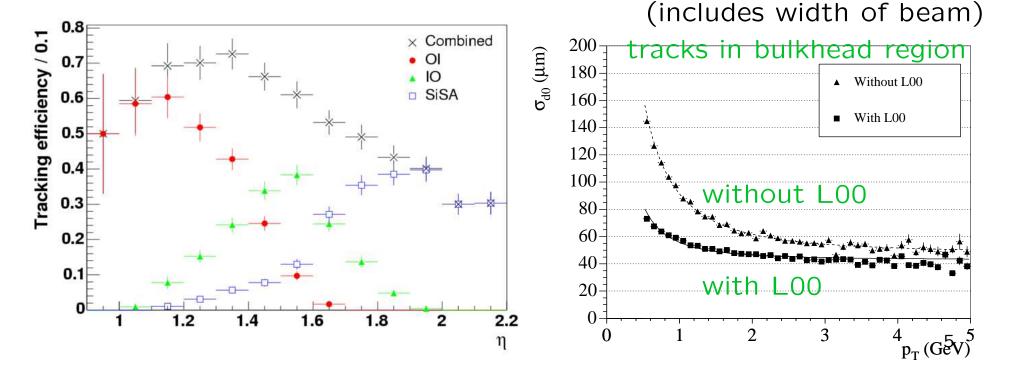
SVXII: 5 double sided layers

- LO: $R\phi$, Rz
- L1: $R\phi$, Rz
- L2: $R\phi$, small angle (1.2°)
- L3: $R\phi$, Rz
- L4: $R\phi$, small angle (1.2°)
- 3 barrels in z,

separated by "bulkheads" with electronics, mechanical support...

 $\ensuremath{\mathsf{ISL}}$ helps in forward region not covered by $\ensuremath{\mathsf{COT}}$

tracking detectors aligned *in situ* using tracks


tracking

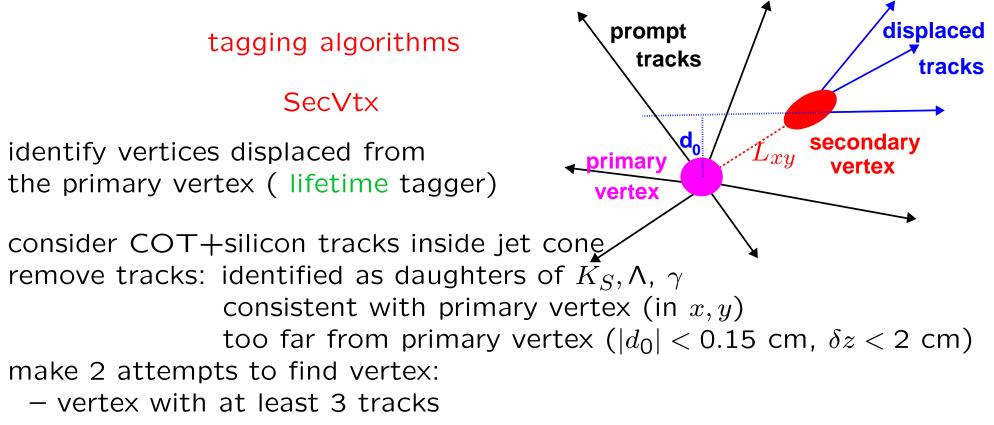
tracking algorithms:

- find track segments in COT layers, combine layers to make tracks
- extrapolate COT tracks into silicon detectors, add silicon hits
- look for tracks using unused silicon hits
- extrapolate silicon tracks into COT, attach COT hits

forward tracking eff in $Z \rightarrow ee$ events

typical d_0 resolution

primary vertex measurement


since the luminous region is large, can get more precise determination of interaction point by reconstructing the primary interaction vertex

identify seed position in z: make histogram of track z_0 , look for peak

consider tracks in window around seed ($\delta z < 1cm$, $|d_0|/\sigma_{d0} < 3.0$) (track z_0 : z position where track is closest to beamline, track d_0 : 2–d impact parameter) fit tracks to a vertex with beamline constraint, exclude tracks which give large χ^2 contribution to fit

final resolution in $t\overline{t}$ events is $10 \rightarrow 32\mu m$ in (x, y), depends on number of tracks used, z position (silicon bulkheads)

significantly better than using just the beam position (beam width = $\sim 26 \rightarrow 32 \mu m, z$ dependent)

- harder track cuts, accept 2 track vertices

resolution on 2-d primary–secondary vertex separation typically 190 μm

require a vertex well separated from primary in 2–d, on correct side of PV, reasonable χ^2 ; veto 2 track vertices in the material regions

one version optimised for higher efficiency, another for better purity (different requirements on tracks, fit χ^2 , primary–secondary separation)

JetProbability

identify jets whose tracks are unlikely to have all come from primary

sign d_0 with respect to the jet direction: Long lived particle decay daughters tend to have $d_0 > 0$ mis-measured tracks tend to have symmetric distribution

in jet data, parameterise negative side distribution of tracks' d_0 significance S_{d0} (split tracks into various "quality" classes)

then consider positive d_0 tracks in jet: \rightarrow per track, calculate probability that light flavour track has larger S_{d0} combine probabilities for all tracks inside jet \rightarrow per jet probability by construction, flat for light, peaked towards 0 for long-lifetime

"tag" jets with probability < 1 or 5%

data/MC efficiency "scale factor"

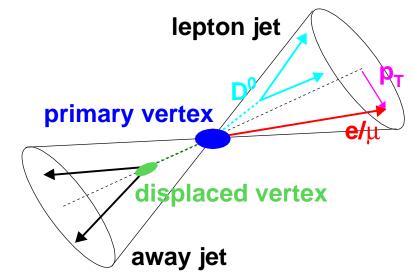
physics processes have different distributions of b jets in E_T, η use MC simulation to account for these differences

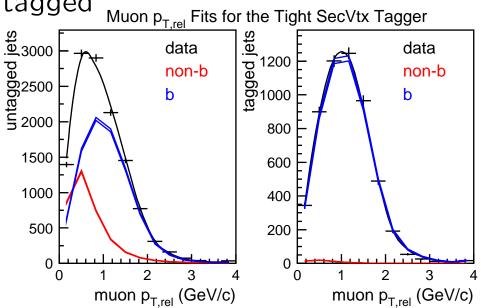
however, simulation is never perfect: tracking efficiency & resolution, B hadron decay models, ...

to estimate the effect of these imperfections, measure an efficiency scale factor in a large, independent dataset.

then apply correction to Monte Carlo simulation of all other processes

scale factor: efficiency measurement

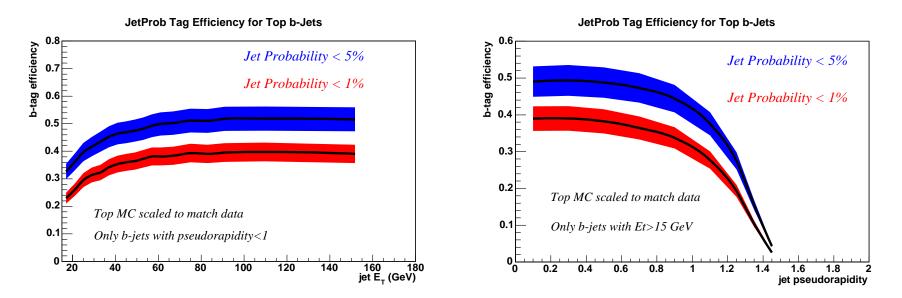

get sample of jets with large b content; count how many are tagged by algorithm


events with jet containing an e/μ estimate b fraction in jet:

fit muon p_T with respect to the jet axis count $e + D^0$ or $e + \mu$ events count how many of these b jets get tagged rather sensitive to b fraction

⇒ increase b fraction in lepton jet require e/μ jet ~ back—to—back to another jet, require "away jet" to be tagged less light flavour contamination,

less sensitive to b fraction


measure tagging efficiency in data and corresponding MC then Scale Factor = $\epsilon_{data}/\epsilon_{MC}$

need to correct for some effects:

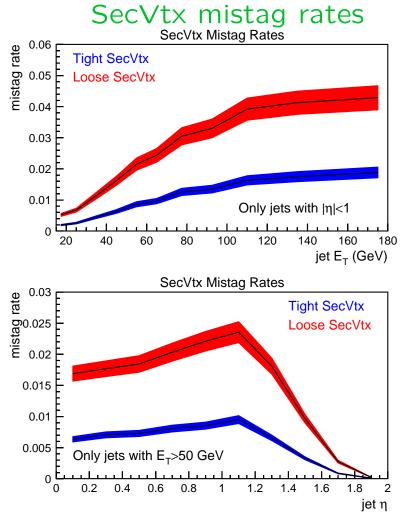
- leptonic b decays have lower multiplicity than generic decays
- take care about E_T dependence: not many high E_T jets in sample

scale factor $\sim (82 \rightarrow 93) \pm 6\%$, depending on tagger

JetProbability b jet tagging efficiency in MC $t\bar{t}$ events, corrected by "scale factor"

mistagging probability

"negative tag":


SecVtx: displaced vertex on wrong side of the primary vertex with respect to the jet direction

JetProbability: probability calulated using tracks with $d_0 < 0$

assume fake tags due to finite tracking resolution are positive/negative symmetrical, then estimate mistagging probability by using negative tag rate

parameterize the mistag rate as a function of jet E_T, ϕ, η , # tracks, event $\sum E_T$

need to account for effect of additional positive contributions from material interactions, unidentified K_S , Λ (increases rate by around 25 %)

soft muon tagger

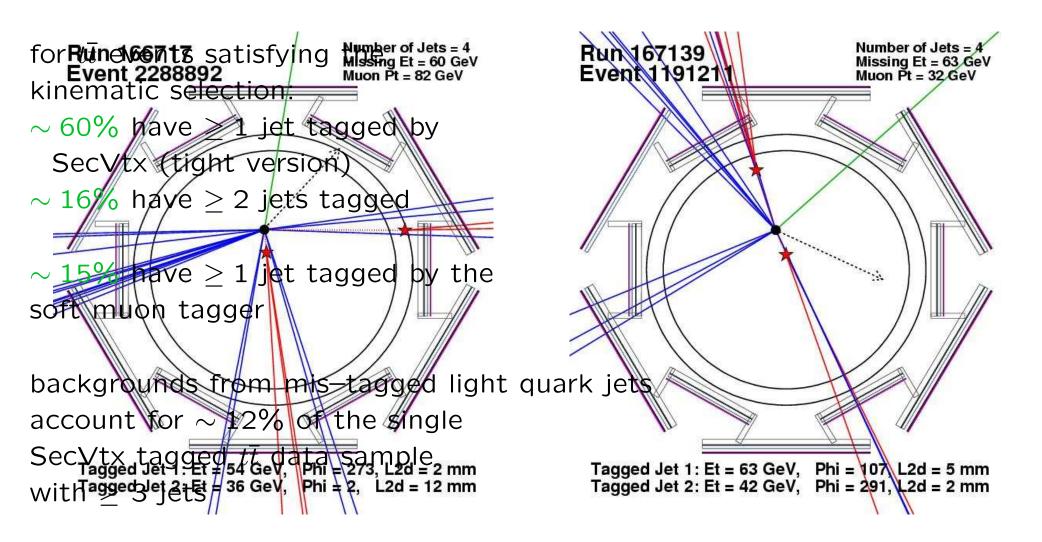
$\sim 20\%$ of B hadrons decay to μ ; • Muon from B decay in tt MC \square B $\rightarrow \mu \nu_{\mu} X$ these are non-isolated, Φ **Arbitrary Units** \triangle B \rightarrow D \rightarrow μ v_u X relatively low p_T \rightarrow can't use M.I.P. characteristics **Dverflow Bin** in calorimeters \rightarrow multiple scattering significant 15 20 2 P^μ_T [GeV/c] 0 5 10 25 30 35 40

dedicated muon ID:

match tracks close to the jet to muon chamber track segments remove tracks from J/ ψ , Υ , Z decays

p_T distribution of μ in $t \to B \to \mu$

mistag rate from the probability to tagging tracks in generic jet data. exclude J/ ψ , Υ , $Z \Rightarrow$ number of true muons is expected to be small dominated by fake μ : punch-through, decays in flight parameterise fake rate as a function of track p_T , η and ϕ typically 0.6 \rightarrow 0.9% μ identification efficiency

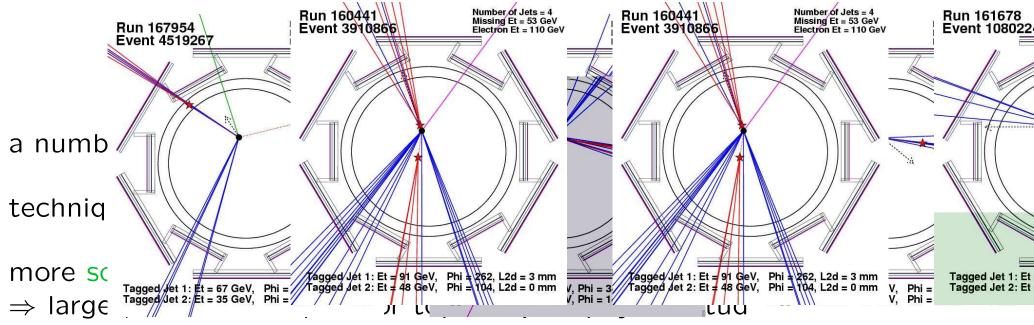

efficiency measured by looking at "second leg" of J/ψ , Z events typically $90 \rightarrow 70\%$ for muon $p_T = 3 \rightarrow 60 \ GeV/c$ these muons tend to be more isolated than those in a b jet: \Rightarrow cross-check in $b\overline{b}$ events

100 95 90 85 Efficiency [%] 80 75 70 65 60 55 50 3 40 14 10 5 7 20 P_T [GeV/c]

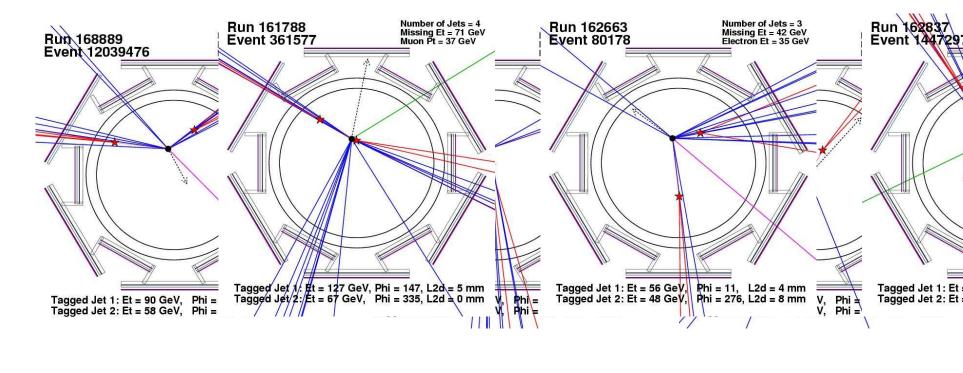
central muon chambers

double tagged $t\overline{t}$ candidate

work in progress


tag soft electrons inside jets

use more information about identified vertices:


- invariant mass of tracks
- relation between vertex & jet momenta
- fraction of jet tracks in vertex
- charge of vertex tracks

- ...

combine information from various techniques in optimal way \rightarrow artificial neural network

& increased probability of discoveries

Run 178862

Number of Jets = 4 Missing Et = 53 GeV