B_s Properties at the TeVatron

Guillelmo Gómez-Ceballos

Instituto de Física de Cantabria

On behalf of the D0 and CDF Collaborations

The "Expected" Outline

- + Brief introduction
- + Tevatron
- + D0 and CDF detectors
- + *B* Triggers
- + Masses and Lifetimes
- + $B_{(s)} \rightarrow h^+ h^-$
- + Rare B_s decays
- + B_s Mixing:
 - $\Delta\Gamma_{s}$
 - Δm_{s}
- + Summary

The "Real" Outline

+ Brief introduction

- + Tevatron (see previous D0/CDF talks)
- + D0 and CDF detectors (see previous D0/CDF talks)
- + *B* Triggers (see previous talk, H. Castilla-Valdez)
- + Masses and Lifetimes (see previous talk, H. Castilla-Valdez)
- + $B_{(s)} \rightarrow h^+ h^-$
- + Rare B_s decays (see next talk, S. Dugad)
- + B_s Mixing:
 - $\Delta\Gamma_{s}$
 - Δm_s
- + Summary

B-Physics at Hadron Colliders

- + Large production rates $\sigma(p\bar{p} \rightarrow bX, |y| < 0.6) \approx 18\mu b$ 10³ higher than at $\Upsilon(4S)$
- + Heavy and excited B states currently uniquely at Tevatron: $B_s, B_c, \Lambda_b, \Xi_b, B^{**}, B^{**}_s, \dots$
- + But QCD background is 10³
 higher than signal
 Triggers are critical
- Event signature polluted by many fragmentation tracks;

High precision vertex tracker + dedicated reconstruction algorithms needed

A lot of Topics...

A large variety of unique *B*-Physics can be made at the Tevatron

...in my talk:

- $B_{(s)} \rightarrow h^+ h^-$
- $\Delta\Gamma_s$
- Δm_s

$B \rightarrow h^+ h^-$

Ingredient for measurement of CP asymmetry, analysis related to the CKM angle γ Need to measure several modes to cancel the hadronic uncertainties in ratio

- + Exploit Two Track Trigger sample at CDF
- + 4 major expected modes
 overlap to form a single structure
 - $B_d \to K^+ \pi^-$
 - $B_s \rightarrow K^+ K^-$
 - $B_d \rightarrow \pi^+ \pi^-$
 - $B_{\rm s}
 ightarrow \pi^+ K^-$

$B \rightarrow h^+h^-$: Separation of Modes

Approach: use mass + kinematic variable(s) + track PID in an unbinned Maximum Likelihood fit \rightarrow extract the fraction of each component

Mass ($\pi\pi$ hypothesis) versus signed momentum imbalance α =

 $(1 - \frac{p_1}{p_2}) * q_1$; p: momentum, q: charge, index 1/2 refer to the lowest/highest momentum track

- $\bar{B_s} \rightarrow K^+ \pi^-$ • $B_s \rightarrow K^- \pi^+$ • $\bar{B_d} \rightarrow K^- \pi^+$
- $B_d o K^+ \pi^-$
- $B_{\rm s} \rightarrow K^+ K^-$
- $B_d o \pi^+\pi^-$

$B \rightarrow h^+h^-$: Separation of Modes (II)

Kaon/Pion separation from dE/dx in the drift chamber: 1.4σ ($p_T \ge 2$ GeV/c)

 $D^* \rightarrow \pi D^0 \rightarrow \pi k^+ \pi^-$ used to calibrate dE/dx

Improvement expected by including time-of-flight as well: $1.4\sigma \rightarrow 1.6\sigma$

TOF separation

dE/dx separation

combined TOF+dE/dx separation

$$\sqrt{(TOF \text{ sep})^2 + (dE/dx \text{ sep})^2}$$

$B \rightarrow h^+h^-$ Results

 $B_{\rm s}$ sector (unique at the Tevatron):

• $\frac{f_S R(B_S \rightarrow K^+ K^-)}{f_d BR(B_d \rightarrow K\pi)} = 0.46 \pm 0.08 \pm 0.07 \text{ (first observation!)}$

CDF Run 2 Preliminary, L=180 pb⁻¹ • $BR(B_s \rightarrow K\pi) < 0.08 * BR(B_d \rightarrow K\pi) * (f_s/f_d) @90\%$ C.L. (a factor 100 improvement w.r.t. PDG!)

 B_d sector

• $A_{CP}(B_d \rightarrow K\pi) = \frac{N(B_d \rightarrow K^+\pi^-) - N(\overline{B}_d \rightarrow K^-\pi^+)}{N(B_d \rightarrow K^+\pi^-) + N(\overline{B}_d \rightarrow K^-\pi^+)} = -0.022 \pm 0.078 \pm 0.012$

 $A_{CP} = -0.133 \pm 0.03 \pm 0.009$ (Babar), $A_{CP} = -0.088 \pm 0.03 \pm 0.013$ (Belle)

 A_{CP} systematics at the level of Babar/Belle. With the current sample on tape we expect to reach Y(4S) precision on the statistical uncertainty as well!

$$\frac{BR(B_d \to \pi^+ \pi^-)}{BR(B_d \to K^+ \pi^-)} = 0.21 \pm 0.05 \pm 0.03$$

Next to follow:

- Measure CP asymmetry in B_s system
- Observe $BR(B_s \rightarrow K\pi)$
- $B_d \rightarrow \pi \pi$ time dependent analysis

B_s Mixing

• So far $V_{td}V_{tb}^*$ measured via Δm_d , suffers from large theoretical uncertainties, but $\Delta m_d/\Delta m_s$ related to CKM elements with 5% uncertainty only

• Δm_s required for measuring time dependent CPV in B_s system ($\rightarrow \gamma$)

• New physics may affect $\Delta m_s / \Delta m_d$

 $B_{\rm s}$, uniquely available at Tevatron, provides 2 independent handles on $\Delta m_{\rm s}$

- + Measuring B_s oscillation frequency: $\mathcal{A}_{mix}(t) \sim \cos(\Delta m_s t)$
- + Measuring decay width difference $\Delta\Gamma_s$, clean relation with Δm_s (in SM)

+
$$\frac{\Delta m_s}{\Delta \Gamma_s} \approx \frac{2}{3\pi} \frac{m_t^2}{m_b^2} (1 - \frac{8}{3} \frac{m_c^2}{m_b^2})^{-1} h(\frac{m_t^2}{M_W^2})$$

G. Gómez-Ceballos, HCP2005

$\Delta\Gamma_s$: Polarization Amplitudes

- In B_s system CP violation is small ($\delta \Phi_s \approx 0$)
- \Rightarrow $B_{s,light}$ = CP even
- \Rightarrow $B_{s,heavy}$ = CP odd

• Generally final states mixture of CP even and odd states, but for Pseudoscalar \rightarrow VV, we can disentangle them

- Has been already done for $B_d
 ightarrow J/\psi K^{*0}$,
- Apply same analysis now to $B_{
 m s}
 ightarrow J/\psi \phi$
- Decay amplitudes decompose into 3 linear
- polarization states
- $|A_0|^2 + |A_{||}|^2 + |A_{\perp}|^2 = 1$
- $A_0, A_{\parallel} = S + D$ wave $\Rightarrow CP$ even
- $A_{\perp} = \mathsf{P}$ wave $\Rightarrow \mathsf{CP}$ odd

• Together with lifetime measurement, angular analysis can separate heavy and light mass eigenstates and determine $\Delta\Gamma_s \rightarrow \Delta m_s$

Mass and Lifetime Projections $(B_s \rightarrow J/\psi \phi)$

First have to reconstruct events, measure mass and lifetime:

Relative average lifetime of $B_s \rightarrow J/\psi \phi$ with respect to topological similar mode $B_d \rightarrow J/\psi K^*$:

$$< \tau_{s} > / \tau_{d} = 0.910 \pm 0.090 \text{ (D0)}$$

 $< \tau_{s} > / \tau_{d} = 0.890 \pm 0.072 \text{ (CDF)}$

Angular Distributions

 * See definition of transversity angles in backup slides

D0 Projections G. Gómez-Ceballos, HCP2005

Angular Amplitudes at CDF

 $\begin{aligned} A_{||} &= (0.473 \pm 0.034 \pm 0.006) e^{(2.86 \pm 0.22 \pm 0.07)i} \\ A_{\perp} &= (0.464 \pm 0.035 \pm 0.007) e^{(0.15 \pm 0.15 \pm 0.06)i} \\ A_{0} &= 0.750 \pm 0.017 \pm 0.012 \\ B_{d} \text{ amplitude compare well with Babar/Belle} \end{aligned}$

Cross check:
$$B_d \rightarrow J/\psi K^{*0}$$

$\Delta \Gamma_s$ Results

CDF/D0 combined results consistent with SM

Tiny systematics!

Experiment	$\Delta\Gamma_{\rm S}/\Gamma_{\rm S}$	< <i>τ</i> > (ps)	$ au_L$ (ps)	$ au_H$ (ps)
CDF	$0.65^{+0.25}_{-0.33}$	$1.40^{+0.15}_{-0.13}$	$1.05^{+0.16}_{-0.13}$	$2.07^{+0.58}_{-0.46}$
D0	$0.21^{+0.33}_{-0.45}$	$1.39^{+0.15}_{-0.16}$	$1.23^{+0.16}_{-0.13}$	$1.52^{+0.39}_{-0.43}$

G. Gómez-Ceballos, HCP2005

2

Δm_{s}

Why is this measurement so difficult?: *B*_s Mesons Mix much faster than Mesons!

In order to measure:

$$\mathcal{A}_{mix}(t) = \frac{N_{unmix}(t) - N_{mix}(t)}{N_{unmix}(t) + N_{mix}(t)}$$

We need to: $\mathcal{D} * \cos(\Delta m_s t)$

- + Reconstruct *B*_s signal in:
 - + hadronic modes
 - + semileptonic modes
- Proper decay length resolution: fully reconstructed modes provide better accuracy
- + Tag the production flavor (the -key- problem in a hadron collider!): tagging power εD^2

Efficiency: $\varepsilon = \frac{N_{wrong} + N_{right}}{N}$; Dilution: $\mathcal{D} = 1 - 2\frac{N_{wrong}}{N_{wrong} + N_{right}} = \frac{N_{right} - N_{wrong}}{N_{wrong} + N_{right}}$ G. Gómez-Ceballos, HCP2005

Reconstructed B_s Candidates (D0)

D0 exploits high statistics μ trigger semileptonic decays: worse proper time resolution, but high statistics

$$c\tau = \frac{L_{xy}}{\gamma\beta}; \ \gamma\beta = \frac{p_T(B)}{M(B)} = \frac{p_T(\ell D)}{M(B)} * K \ (K \text{ from MC}); \ \sigma_{c\tau} = (\frac{\sigma_{L_{xy}}}{\gamma\beta}) \oplus (\frac{\sigma_{\gamma\beta}}{\gamma\beta}) * C\tau$$

Reconstructed B_s Candidates (CDF)

Uses hadronic modes: $B_s \rightarrow D_s \pi$ & semileptonic modes: $B_s \rightarrow \ell D_s X$

where $D_s \rightarrow \Phi \pi, K^*K, 3\pi$

G. Gómez-Ceballos, HCP2005

ct Resolution Studies (CDF)

The proper decay length resolution is the limiting factor at high Δm_s Studies on this topic play a very important role!

B Flavor Tagging

Opposite Side Tagging:

• Jet-Charge-Tagging:

sign of the weighted average charge of opposite B-Jet

• Soft-Lepton-Tagging:

identify soft lepton (e, μ) from semileptonic decay of opposite B: $b \rightarrow I^- X$ (BR $\approx 20\%$),

Dilution due to $\bar{b}
ightarrow \bar{c}
ightarrow \varGamma X$ and oscillation

• Kaon-Tagging:

due to $b\rightarrow c\rightarrow s$ it is more likely that a \overline{B} meson contains a K^- than a K^+ in the final state (particle ID is mandatory)

Same Side Tagging:

• $B_{s/d}$ is likely to be accompanied close by a K^+/π^+ (particle ID is mandatory)

Crucial Test of the Whole "Machinery": Bd Mixing

- + For setting limit on Δm_s , knowledge of tagger performance is crucial \rightarrow measure tagging dilution in kinematically similar B^0/B^+ samples
- + Δm_d and Δm_s fit is very complex, up to 500 parameters
 - + combining several *B* flavor and several decay modes
 - + combining several taggers
 - + mass and lifetime templates for various backgrounds

 Δm_d measurement is very important to test the fitter

Δm_d Measurement and Tagging Performance

Combined taggers (semileptonic channels) D0:

 $\Delta m_d = 0.558 \pm 0.048$ (stat) ps⁻¹

Combined opposite side taggers (semileptonic channels) CDF: $\Delta m_d = 0.497 \pm 0.028(\text{stat}) \pm 0.015(\text{sys}) \text{ ps}^{-1}; \text{ total } \varepsilon D^2 : 1.43 \pm 0.09 \%$

Combined opposite side taggers (hadronic channels) CDF:

 $\Delta m_d = 0.503 \pm 0.063 (\text{stat}) \pm 0.015 (\text{sys}) \text{ ps}^{-1};$ total $\varepsilon D^2 : 1.12 \pm 0.18 \%$

$\varepsilon D^2(\%)$	CDF semileptonic channels *	D0
$SST(B_d)$	$1.04 \pm 0.35 \pm 0.06$	1.00 ± 0.36
Soft μ	0.56 ± 0.05	1.00 ± 0.38
Soft e	0.29 ± 0.03	-
Jet-Q	0.57 ± 0.06	~ 1 (measured combined with SST)

* OST measured exclusively

Amplitude Scan Method

- * For infinite statistics, perfect taggers, optimal reconstruction, A should be zero for all Δm_s values but the correct one.
- * Limit: a given value Δm_s is excluded @ 95% C.L., if $A(\Delta m_s) + 1.645 \cdot \sigma[A(\Delta m_s)] \le 1$
- * Sensitivity: smallest Δm_s value for which $1.645 \cdot \sigma[A(\Delta m_s)] = 1$
- * Amplitude scan method allows easy combination among different measurements/experiments.

First B_s Mixing Limits in Run II

Observed Limit at 95% C.L.: 14.5 ps^{-1} (Sensitivity: 18.5 ps^{-1})

Coming Improvements and Projections

Short term improvements (a few months scale)

D0:

- Unbinned fitting procedure
- Addition of other taggers
- Use of other semileptonic decay modes
- Use of hadronic decay modes (!)

CDF:

- Use additional hadronic modes
- Use semileptonic events from other triggers
- Improve vertex resolution
- Use an improved version of the Jet Charge tagger
- Use Same-Side Kaon tagger (!)

Long term projections: Δm_s Measurement

CDF Projections :: Combined Analyses

SSKT: Work in Progress (CDF)

- + There is no straightforward way to measure the tagger dilution on data unless we observe Mixing
- + On the other hand to set a limit we must know the dilution of the taggers
- Therefore, we need to believe the SSKT MC prediction

Tune in progress!: we need to convince ourselves that MC is reproducing the charge correlation for B_s Mesons

Summary

• Tevatron experiments are in unique position to exploit B_s system

- A lot of new results on B_s decays in the last year
- First measurements of $\Delta\Gamma_s$ from D0 and CDF available
- Δm_d results are quite robust and consistent with world average
- First Δm_s Mixing limits in Run II from both D0 and CDF since last March, a huge room for improvements is still possible!
- We are working very hard to give both experiments very important contributions to the B_s Mixing world average as soon as possible!

Back Up Slides

G. Gómez-Ceballos, HCP2005

CKM Matrix

Goal: Measure sides/angles of CKM triangle sides in all possible ways

Transversity Angles

Same Side Tagging

Some of the possible species of particles produced in the fragmentation of a *b* quark to a *B* meson.

Δm_s : World Average

