

Highlights from High $P_{\rm T}$ Physics at CDF

Catalin Ciobanu, Univ. of Illinois Urbana-Champaign, for the CDF Collaboration

Fermilab Users' Meeting, June 8, 2005

Topics from electroweak, top, and exotic physics

CDF at the Tevatron

Records falling like

dominos!

- Tevatron and CDF performance:
 - Last month was very exciting:
 - Init. luminosity > 1.3×10³² cm⁻²s⁻¹
 - Single store: > 5 pb⁻¹
 - Delivered integrated luminosity: 1fb⁻¹
 - CDF recorded ~0.8 fb⁻¹
 - > High-luminosity upgrades on schedule
- Current analyses use 0.3-0.4 fb⁻¹

- W and Z leptonic decays
 - ► Yardstick for all high-P_T lepton analyses
 - Backgrounds for many new physics processes
 - Used for calibration of energy/momentum scales
- Large datasets \rightarrow better and broader physics reach:
 - ▶ √ W/Z cross-sections: Phys.Rev.Lett.94:091803,2005
 - Z boson asymmetry: Phys. Rev. D71:051104,2005
 - ► √ W charge asymmetry: Phys.Rev.D71:051104,2005
 - $\sqrt{W\gamma}$, $Z\gamma$ production: Phys.Rev.Lett.94:041803,2005
 - ► √ ZZ, ZW production: Phys.Rev.D71:091105,2005
 - ▶ √ WW production: hep-ex/0501050
- Highlights:
 - W boson mass measurement
 - Diboson measurements

- W[±] mass fundamental parameter of SM
 - Radiative corrections: depend on m_t and m_H

- Measure m_W , m_t precisely \rightarrow constrain m_H !
- Currently, m_W known to a precision of 34 MeV:
 - ► LEP: 80,447 ±42 MeV
 - Tevatron: 80,454 ±59 MeV (Run I)
 - > Uncertainty: 79 MeV (CDF), 84 MeV (D0), with L \approx 120 pb⁻¹
- Run II Goal: uncertainty < 40 MeV per experiment</p>

- How do we measure W mass:
 - **7** Clean signals: W→ev, W→ μv
 - **7** Most information comes from $P_T(\ell)$, $\ell = e$, μ
 - **7** Neutrino $P_T(v)$ inferred via hadronic recoil
 - ↗ Calculate transverse mass:

$$m_{W,T}^2 = 2P_T^1 P_T^{\nu} (1 - \cos \Delta \Phi^{1\nu})$$

• Backgrounds (contribute $\delta m_W \sim 20 \text{ MeV}$)

$\mathbf{W} \rightarrow \mu \mathbf{v}$		W→ev	
Background	%	Background	%
Hadronic Jets	0.9 ± 0.5	Hadronic Jets	1.1 ± 0.4
Kaons	1.0 ± 1.0	$Z \rightarrow ee$	0.27 ± 0.03
Cosmic Rays	0.3 ± 0.1	$W \rightarrow \tau v$	1.9 ± 0.1
$Z \rightarrow \mu\mu$	4.4 ± 0.2		
$W \rightarrow \tau v$	1.9 ± 0.1		

W Mass Status

Source	e: Run2 (IB)	μ: Run2 (IB)
Lepton Energy Scale and Resolution	70 (<mark>80</mark>)	30 (<mark>87</mark>)
Recoil Scale and Resolution	50 (37)	50 (35)
Backgrounds	20 (5)	20 (25)
Production and Decay Models	30 (<mark>30</mark>)	30 (30)
Statistics	45 (65)	50 (100)
Total	105 (110)	85 (<mark>140</mark>)

• First pass at W mass with 200 pb⁻¹:

- Incertainty δm_w=76 MeV lower than CDF Run I
- **7** Work in progress to reduce δm_W :
 - Adjust tracker aligment
 - Recoil resolution and P_T(W)
 - Passive material and radiation
- **7** First m_W results to be finalized soon

W transverse mass m_T fit:

- Test of WWγ couplings
- Constrain ZZ γ and Z γ γ vertices (absent in SM)
- Background of gauge-mediated SUSY Breaking models
 Phys.Rev.Lett.94:041803,2005

 $\sigma(p\overline{p} \rightarrow W\gamma) = 18.1 \pm 3.1 \,\mathrm{pb}$

SM expect: $\sigma(W\gamma)$ = 19.3 ± 1.4 pb

$$q \rightarrow W^* \rightarrow q \qquad W^* \rightarrow q \qquad \gamma$$

 $\sigma(Z\gamma) = 4.6 \pm 0.6 \,\mathrm{pb}$

SM expect: $\sigma(Z\gamma) = 4.5 \pm 0.3$ (pb)

- WZ, ZZ important step towards Higgs searches
- W[±]Z unavailable at e⁺e⁻ colliders => unique meas. of WWZ

 $\sigma(pp \rightarrow ZZ/ZW+X) < 15.2 \text{ pb} \text{ at } 95\% \text{ C.L.}$

 $\sigma(pp \rightarrow ZZ/ZW+X)^{THEORY}_{NLO} = 5.0 \pm 0.4 \text{ pb}$

- History:
 - ↗ large statistics at LEP2 (but lower en. scales)
 - ↗ Tevatron Run I low significance: 5 events over 1.3±0.3 bkgrd.
- First Run 2 result:

hep-ex/0501050

 $\sigma(\text{pp->WW})^{\text{THEORY}}_{\text{NLO}} = 12.4\pm0.8 \text{ pb}$

 $\sigma(WW) = 14.6^{+5.8}_{-5.1}(stat)^{+1.8}_{-3.0}(sys) \pm 0.9(lum) \,\text{pb}$

- Can also search for lepton+jets signature (Ivjj):
 - Higher BR than dilepton final state
 - Larger uncertainties
 - ↗ Smaller S/B ratio

 $\sigma(WW/WZ) < 40 \text{pb}(\text{at}95\% \text{C.L.})$

Constrain anomalous triple gauge couplings

GeV/c²

- Top is the most intriguing particle we know:
 7 Why so heavy?
 - **7** m_t , m_W , m_H are related via loop diagrams
 - ↗ Top decays before hadronizing (4.10⁻²⁵ s)
 - ↗ SM Yukawa coupling ~1 (coincidence?)
- CDF top group very dynamic:
 - ► √ Single-top-quark search: Phys.Rev.D71:012005,2005
 - ▶ √ W polarization in top decays: Phys.Rev.D.71:031101,2005
 - ► √ Top pair cross section b-tag: Phys.Rev.D71:052003,2005
 - ► √ Top pair cross section kinematic+b-tag: Phys.Rev.D71:072005,2005
 - ► √ Top pair cross section kinematic (NN): hep-ex/0504053,2005
 - ► √ Top pair cross section with Soft Muon Tagging: hep-ex/0506001,2005
 - ► √ Anomalous kinematics in tt dilepton events: FERMILAB-PUB-04-396-E
 - ► $\sqrt{\text{Br}(t \rightarrow \text{Wb})/\text{B}(t \rightarrow \text{Wq})}$: FERMILAB-PUB-05-219-E
- Highlights:
 - **7** Top mass measurement
 - Top cross-section measurement

- Only at the Tevatron! (so far)
- Strong (pair) production main channel

- Top decay:
 - **↗** SM: t →Wb almost 100% of the time
 - ↗ CDF: V_{tb}>>V_{ts}, V_{td}
 - Classified according to W decays
 - Lepton+jets, dilepton, all hadronic

- 5% Dilepton (ee, μμ, eμ)
- 30% Lepton+jets (e+j, μ+j)
- 45% All hadronic

Top Quark Mass

Run I average:

 $m_t = 178.0 \pm 4.3 \text{GeV} / c^2$

- ➤ Using 106-120 pb⁻¹ per exp.
- Lowest uncertainty: D0 I+jets result
- Run 2 goal:
 - <2.5 GeV uncertainty per experiment</p>
- Already analyzed >300 pb⁻¹
 - We should do better than Run I
- Difficult measurement:
 - Jet energies not precisely measured
 - Final state difficult to reconstruct
 - Many possible configurations
 - ISR and FSR further complicate the picture
 - Small statistics (esp. dileptons)...

- Jet energies imprecisely measured.
 - **7** Poor resolution \rightarrow statistical error.
 - 50 GeV quark measured as 30 GeV jet
 - **7** Uncertain scale → systematic error.
 - Jets are hard to calibrate (3-5%)
 - (no nice resonance to use)

- Lepton+jets channel:
 - オ ttbar b-tag event efficiency ≅60%

Category	2-tag	1-tag(T)	1-tag(L)	0-tag
j1-j3	Е _т >15	Е _т >15	Е _т >15	E _T >21
j4	E _T >8	E _T >15	15>Е _т >8	E _T >21
S:B	18:1	4.2:1	1.2:1	0.9:1
Observe	16	57	25	40

- Reconstruct mass:
 - χ² mass fitter one number per event
 - Best m_t and combination assignment

Fit to Data

- Simultaneous fit in the 4 channels
 - ↗ Luminosity: 318 pb⁻¹
- Systematic uncert. dominated by JES:

Jet Energy Systematic Source	Uncert. (GeV/c²)
Relative to Central Region	0.6
Corrections to Hadrons (Absolute Scale)	2.2
Corrections to Partons (Out-of- Cone)	2.1
Total	3.1

....The answer is:

 $m_t = 173.2 + 2.9/-2.8 \text{ (stat)} +/- 3.4 \text{ (syst) } \text{GeV/c}^2 \\ = 173.2 + 4.5/-4.4 \text{ GeV/c}^2$

2D Templates

- Account for correlations:
 - P(m_{reco}|M_t,JES) and P(m_{jj}|M_t, JES) templates for every point (M_t, JES)
 - More complex, but tractable
- (2D) Fit data simultaneously for M_t, JES
- This reduces JES uncertainty:
 - In turn, top mass uncertainty is reduced
- Bonus:
 - Using this method, JES scales down directly with luminosity!

CDF Run II Preliminary

Fit to Data (318 pb⁻¹)

$$m_{t} = 173.5_{-2.6}^{+2.7} (stat.) \pm 2.5 (JES) \pm 1.7 (syst.) \text{GeV} / c^{2}$$
$$= 173.5 + 4.1 / - 4.0 \text{ GeV} / c^{2}$$

$$JES = -0.10^{+0.78}_{-0.80} \sigma$$

New result is world best measurement of M_{top}!

- Thanks to:
- S. Heinemeyer
- G. Weiglein
- M. Grunewald

$$m_t = 173.8 \pm \frac{2.7}{2.5}$$
 (stat) ± 3.3 (syst.)GeV/c²

= 173.8 + 4.3 – 4.1 GeV

63 events joint likelihood

- Stay tuned for results from dilepton and all-hadronic analyses
- Publications out by end of summer

- Top pair cross-section:
 - **7** Depends on top mass m_t
 - **7** We need to measure both m_t and $\sigma(tt)$
- Use e+jets, μ+jets events
- Traditionally, require \geq b-tag
- Alternately, relax b-tag condition:
 - Increase statistics
 - ↗ But decrease S/B
- Use 7-input Neural-Network:
 - Energy and angular information

CDF Preliminary (347 pb⁻¹)

Sample	Events	Fitted <i>tt</i>	σ(<i>†</i> 7)	
W + \ge 3 jets	936	148.2 ± 20.6	$6.0\pm0.8\pm1.0~pb$	ſ
$W + \ge 4 - Jet$	210	80.9 ± 15.0	$6.1\pm1.1\pm1.4~pb$	

M_{top}=178 GeV/c²

Displaced vertices (silicon vertex detector)

Soft lepton (muon) tagging

- Standard Model decay: $t \rightarrow Wb$
- Two Higgs doublet extension of SM: H[±], A(CP-odd), H,h (CP-even) 7 $t \rightarrow H^+b$ with $H^+ \rightarrow \tau v$, $H^+ \rightarrow cs$, $H^+ \rightarrow Wbb$
- Search in 4 channels:
 - **7** Dileptons, lepton+jets (1, or \geq 2 b-tags), lepton+ τ (decaying hadronically)

New Physics at CDF

- Where to look?
 - Everywhere we can!
- Events with leptons (even τ's) provide clean signals
- Higgs searches:
 - ↗ MSSM Higgs
 - ≻ A→τ+τ- (310 pb⁻¹)
- Search for massive resonances:
 - Spin 0: Scalar neutrino production and decay (344 pb⁻¹)
 - ↗ Spin 1: Z'-bosons search (448 pb⁻¹)
 - ↗ Spin 2: Randall-Sundrum gravitons

MSSM Higgs: A→ττ

 σ (pp \rightarrow H/A/h) \propto tan² β

 Enhanced production of A at hadron colliders

- A decays: bb (~90%), ττ (~8-9%)
 - bb: larger BR, but need production in association of b-quarks to control bgrds
 - ττ : allows searches in all production channels
- One tau decays leptonically, the other one hadronically
- Backgrounds:
 - **7 Ζ**→ττ
 - **7** Events with jet $\rightarrow \tau$ fakes

- R-parity violation
 - Lepton-number violating terms: λ_{ijk}, λ'_{ijk}
- Resonance-like production
- Start with e+μ channel
 - ↗ Very clean signature
 - **7** Sensitive to both λ and λ '
- High acceptance in the region of interest
- Dominant background is $Z \rightarrow \tau \tau$
- Expect 71.3 events. Observe 74
 7 Set limits

0.16

0.1

0.05

0.15

0.2

0.25

Mass eµ (TeV/c²)

0.3

0.35

0.4

0.45

Coupling	Channel	Limit (GeV)
λ_{131}	ee	M>680
λ_{132}	e μ	M>460
λ_{133}	θτ	-
λ_{232}	μμ	M>665
λ_{233}	μτ	-
λ_{333}	ττ	M>375

- Most extensions to SM predict new gauge interactions
 - Most give neutral or singly charged bosons
 - ↗ Tight constraints on Z⁰-Z' mixing from LEP
- Search for decays: Z'→e⁺e⁻

 - Dataset: 448 pb⁻¹
- No evidence of signal:
 - ↗ Set 95% C.L. limits:

Z' Model	M _z Limit (GeV)	
Seq. Z'	845 √	
E6 Ζ _χ	720 🔨	
$\mathbf{E6} \mathbf{Z}_{\psi}$	690 🔨	
E6 Z _n	715	
E6 Z _I	625 🗸	

- Adding angular information helps:
 - **7** At 448 pb⁻¹: use $\cos\theta^* \equiv +25\%$ data (seq. Z')
- 2004 paper by Carena et al defines 4 general model classes (PRD70:093009,2004):
 - ↗ B-xL, q+xu, 10+x5, d-xu
 - ✓ Within each class, Z' defined by: mass M_{Z'}, strength g_z, parameter x

- Comparisons to LEP 2 possible:
 - q+xu, 10+x5, d-xu more exclusion than LEP II
 - As well as LEP II for B-xL
 - More sensitive than LEP to low g_z couplings

- The high- P_T physics program at CDF is broad:
 - 7 10 Run 2 high-P_T papers published in 2005
 - Top program entering new territory
 - World's best top mass measurement
 - Unprecedented top-quark datasets
 - Electroweak:
 - ➤ W mass result being finalized
 - New precision on Diboson results
 - Exotics:
 - New MSSM Higgs and heavy boson searches
 - Many searches for New Phenomena ongoing
- CDF has 800 pb⁻¹ on tape
 - More precise measurements and increased sensitivity for New Physics searches

- Production and Decay Model Uncertainties:
 PDFs, QED corrections, P_τ(W) and Γ(W) model: δm_w~30 MeV
- Tracker Calibration:
 - **↗** Use J/ $\psi \rightarrow \mu\mu$ and $\Upsilon(1S) \rightarrow \mu\mu$: δm_W ~25 MeV
- Electron Energy Calibration:
 - **Z** Energy scale set using using E/p peak from W electrons $\delta m_W \sim 35$ MeV
 - Non-linear calorimeter response: δm_W~25 MeV
 - **Z** E/p tail used for tuning passive material upstream (silicon) $\delta m_W \sim 55$ MeV
- Hadronic Recoil Measurement (impacts neutrino measurement):
 - **Recoil** u measured by summing over all calorimeter towers
 - Lepton energy is removed: δm_w~10 MeV
 - ↗ Hadronic Recoil Model:
 - > Parametrize R = u_{meas}/u_{true} Just u_{true} contributes $\delta m_W \sim 20$ MeV
 - > Underlying event: $\delta m_W \sim 40 \text{ MeV}$
 - > Jet energy resolution: $\delta m_W \sim 20 \text{ MeV}$