Top Quark Properties results and ongoing analyses at CDF

Ricardo Eusebi

University of Rochester

Frontiers in Contemporary Physics III May 2005, Nashville, Tennessee.

on behalf of the CDF collaboration

Fermilab's Tevatron

- Currently the highest energy particle accelerator in the World
 - Proton-antiprotons beam
- 2 multi-purpose detectors
 - **D** \varnothing and CDF
- Run I (1992-1996)
 - ⇒ √s = 1.8 TeV
 - Discover top quark in 1995!
 - Integrated luminosity 120 pb⁻¹
- Run II (2001-present)
 - ⇒ √s = 1.96 TeV
 - Integrated luminosity by April, 05:
 - Contract Contract
 - In tape ~600pb⁻¹

This talk about CDF Collider Detector at Fermilab

Top Quark Production at the Tevatron

produced in pairs via the strong interactions.

ttbar final states

- **○** In the SM the BR(t \rightarrow Wb) >0.99 @95%CL
- ➡ Final state is given by W⁺ and W⁻ decays
 - **S** All Hadronic channel
 - Large BR
 - Small S/B
 - **Constant** Lepton (e, μ) + Jets channel
 - Second large BR
 - Good S/B
 - overconstrained kinematics
 - Dilepton channel
 - BR is ¼ of L+Jets
 - cleanest channel
 - underconstrained kinematics
 - Lepton + Hadronic Tau channel
 - Very small BR
 - ➡ S/B~1
- Production cross section measured in all these channels
 - See Petra Merkel's talk, tomorrow)

Can we measure $BR(t \rightarrow Wb)$?

Measurement of BR(t \rightarrow Wb)/BR(t \rightarrow Wq)

- **Indirect measurement using the CKM matrix** :
 - Elements |V_{ub}| and |V_{cb}| are measured from the decay of B mesons to be very small.
 - Assuming unitarity and only three generations |V_{tb}| is expected to be 0.998@90 %CL
- **With top quarks at hand we can measure it directly** :
 - we measure R, defined as

$$R = \frac{BR(t \to Wb)}{BR(t \to Wq)} = \frac{|V_{tb}|^2}{|V_{td}|^2 + |V_{ts}|^2 + |V_{tb}|^2} \quad \text{where } q = \{d, s, b\}$$

- Use the ability to identify jets with a distinguished secondary vertex associated with the b parton.
 - \bigcirc The number of b-tagged jets depends strongly on R and ε_{b}
- We classify the ttbar sample based on the number of b-tagged jets
 - ➡ The relative rates of events with 0/1/2 b-tags is very sensitive to R

Measurement of BR(t \rightarrow Wb)/BR(t \rightarrow Wq)

- Use the Lepton+Jets and Dilepton samples.
 - Total integrated luminosity of 162 pb⁻¹
- Lepton+Jets sample requires:
 - **Soluted lepton (e, \mu) with E_T>20 GeV**
 - \blacksquare ME_T>20 GeV
 - at least 4 jets with $E_T > 15$ GeV
- Classify both samples based on the number of 0/1/2 b-tagged jets
- Estimate the background contribution to each of the six sub-samples
 - MC and data driven
 - Background in the Lepton+Jet with
 0-tags obtained using NN techniques.

- **Dilepton** sample requires :
 - **C** At least two leptons (ee, $\mu\mu$, $e\mu$) E_T>20 GeV
 - \square ME_T>20 GeV
 - at least two jets with $E_T > 15$ GeV.

Measurement of BR(t \rightarrow Wb)/BR(t \rightarrow Wq)

In the Dilepton and Lepton+Jets samples analyze the relative number of events with different multiplicity of secondary vertexes, *i*.

Instead, we take the approach of normalizing to the measured cross section

$$N_{inc}^{t\bar{t}} = \sum_{i} N_i^{obs} - N_i^b$$

5/22/2005

Measurement of BR(t→Wb)/BR(t→Wq)

Solution Mild excess in double b-tags sample drives the R value above 1

5/22/2005

The R result is consistent with the SM.

This means that the top decays to a b quark most of the time, as

expected.

The R result is consistent with the SM.

This means that the top decays to a b quark most of the time, as

expected.

Charged Higgs bosons appear in the context of 2HDM's, like MSSM.

- ⇒ E.S.B → 5 Higgs bosons; 3 neutral (h⁰, H⁰, A⁰) and <u>2 charged (H[±])</u>
 Many new decay channels :
 - ⇒ h⁰, H⁰ → bb, ττ, gg, W⁺W⁻, ZZ, cc ⇒ A → bb, ττ, gg, Zh⁰ ⇒ H⁺→t^{*}b, τ+ν, cs, W⁺h⁰, W⁺A, etc This analysis assumes H+ may decay to any of these
- The presence of an H+ would affect the relative number of events in each top decay channel, according to its decay. For example :
 - **If H+** $\rightarrow \tau v$, number of events in the **Lepton+Tau** sample would show an excess.
 - If H+→cs, number of events in the Dilepton and Lepton+Jets would show a deficit.

Top and Higgs BR's unknown. MSSM can predicted them for specific benchmark parameters.

5/22/2005

- **Solution** For each top quark we have 5 possible decay modes
 - t→Wb
 - t→H⁺b→t*bb→W⁺bbb
 - ⊃ t→H⁺b→c<u>s</u>b

⊃ t→H⁺b→τνb

- **⊃** t→H⁺b→W⁺h⁰b→W⁺b<u>b</u>b
- Use the Dilepton, Lepton+Jets (1 and 2 or more tags) and Lepton+TauH (generically XSA)
- **The number of expected candidates** N^{exp} is

$$N_{XSA}^{\exp} = N_{XSA}^{back} + \sigma \mathcal{E}_{tt,XSA} \int L dt \longrightarrow \text{-191 pb}^{-1}$$

from XS meas.
$$\sigma_{\text{theo}}^{\text{theo}} = (6.7 \pm 0.7)\text{pb}$$
(hep-ph 0303085)
$$\int \mathcal{E}_{tt,XSA} = \sum_{i,j=1}^{5} B_i B_j \quad \mathcal{E}_{i,j \text{ XSA}} \left(wTop, wHiggs, m_{H^{\pm}}, m_{h^0} \right)$$

Branching fractions of each decay mode

- Need to know the BR's to compute the efficiency
- **Civen {BR's} compare Nobs to Nexp for each cross section measurement**
 - Use a likelihood in the parameter of interest

Using CPsuperH (hep-ph/0307373) to predict the BRs
 Full QCD, SUSY-EW and SUSY-QCD corrections included

Content Expected Events as a function of $tan(\beta)$. Integrated luminosity 191 pb⁻¹

SR's predicted by MSSM in Minimal Stop Mixing scenario

SR's predicted by MSSM in another benchmark scenario

C Results are, within reach, consistent with the SM.

○ Assume then that $t \rightarrow W^+b$

But, is the nature of the tWb vertex as expected?

W helicity from $t \rightarrow Wb$ decays

- Examines the nature of the tWb vertex, probing the structure of weak interactions at energy scales near EWSB
- Stringent test of SM and its V-A type of interaction.

W helicity from $t \rightarrow Wb$ decays

- In general, the θ^* distribution of top decays in the W rest frame is W rest frame $w(\cos\theta^*) = F_{-} \cdot \frac{3}{8} (1 - \cos\theta^*)^2 + F_{0} \cdot \frac{3}{4} (1 - \cos^2\theta^*) + F_{+} \cdot \frac{3}{8} (1 + \cos\theta^*)^2$ where F_+F₀+F₊≡1
- In the Standard Model : $F_{-}=0.3$ $F_{0}=0.7$ $F_{+}\approx0$ (exact when $m_{b}=0$) 0

- The different W helicities result in different P_{T} spectrums
 - left-handed: leptons are emitted opposite to W boson (softer lepton P_{T})
 - longitudinal: leptons are emitted perpendicular to the W (harder lepton P_{T})
 - right-handed: leptons are emitted parallel to W boson (hardest lepton P_{T})

W⁺

W helicity : Longitudinal Fraction

- **C** Likelihood analysis of P_T spectrum
- Combined lepton+jet and dilepton samples: 57+13 events

- **dominated by statistical uncertainties Likelihood analysis of** $\cos(\theta^*) \cong \frac{2m_{lb}^2}{m_t^2 - m_W^2} - \frac{2}{m_t^2}$
- Lepton+jets : 31 events
- Use mass fitter to select the

- Mild Excess in the low Pt region
- Right Handed Fraction: measurement ongoing at CDF. (Run 1 F₊<0.18 @95%)</p>

What about production ?

- ➡ We know that, within errors,:
 - The top decays mostly to b
 - The top decays mostly to W+
 - **The nature of the tWb vertex is what's expected.**

Are some top pairs coming from a resonance?

Search for ttbar resonances

Template method : 3 templates for modeling data: X₀, tt, W+4p

ttbar resonances: Sensitivity

CEXPECTED posterior p.d.f. for a 700 GeV resonance

Over Work in progress. Stay tuned for incoming results.

What else ?

- **We know that:**
 - Top is produced in ttbar pairs (and possibly singly too)
 - The top decays mostly to b
 - The top decays mostly to W+
 - **The nature of the tWb vertex is what's expected.**

Solution Is anything beyond SM in our top sample?

SM Kinematic Test

- **C** Run 1 saw an excess of large ME_T and lepton P_T
 - PRL 77 3506 (1996) proposed that squarks around 300 GeV show better agreement to data
- **Run 2** : Work in the **Dilepton** sample
- Choose *a priori* a set of variables with potential sensitivity to new physics
 - **The Section P** T
 - Angle(ME_T, Leading Lepton) Topness" (based on kinematical fit)
- Perform Kolmogorov-Smirnov consistency test between data and MC

Select the subset of events with the most non-SM features

5/22/2005

SM Kinematic Test

A (leading lepton, met) CDF II preliminary f = 1f

Leading lepton p_T

"topness" = ttbar decay goodness-of-fit

 \bigcirc Overall agreement of 1.0-4.5% mainly due to an excess at low lepton P_T

Conclusions

- CDF is seriously focused on exhaustive measurements of top properties
- Many more analyses ongoing
 - ⇒ FCNC t→Zc
 - Top Spin correlations
 - **○** Search for t' \rightarrow Wq
 - **Top charge measurements**
 - and more...
- Exciting times :
 - Analyses are very mature
 - Much more data on tape

Uncertainties are beginning to shrink

Over the set of the

