$\Lambda_{\rm b}$ Physics at CDF

Shin-Shan Yu

University of Pennsylvania for the CDF Collaboration Frontiers in Contemporary Physics -III, May 23-28, 2005

Outline

- Why Λ_{b}
- CDF Detector, Trigger
- Previous Λ_{b} Results
 - Lifetime and Mass:
 - $\Lambda_{\rm b} \to {\rm J}/\psi \; \Lambda$
 - Branching Fractions:
 - $\Lambda_{\rm b} \rightarrow {\rm J/\psi} \Lambda$, $\Lambda_{\rm b} \rightarrow {\rm pK}$, ${\rm p\pi}$, $\Lambda_{\rm b} \rightarrow \Lambda_{\rm c} \pi$
- New Results
 - Branching Fractions:
 - $\Lambda_{\rm b} \to \Lambda_{\rm c} \, \pi, \, \Lambda_{\rm b} \to \Lambda_{\rm c} \, \mu \nu$
 - First Observations:
 - $$\begin{split} \Lambda_{\rm b} &\to \Lambda_{\rm c}^{*}\,\mu\nu, \Lambda_{\rm b} \to \Sigma_{\rm c}\,\pi\mu\nu\\ \Lambda_{\rm b} &\to \Lambda_{\rm c}\pi\pi\pi \end{split}$$

Future

Big Picture : Why Λ_b baryon?

∧ b	$I(J^P) = O(\frac{1}{2}^+)$		
$I(J^P)$ not yet measured; $0(\frac{1}{2}^+)$ is the quark model prediction. Mass $m = 5624 \pm 9$ MeV (S = 1.8) Mean life $\tau = (1.229 \pm 0.080) \times 10^{-12}$ s $c\tau = 368 \ \mu$ m			
10 DECAY MODES	Fraction (Γ	;/Γ)	
🟓 J/ψ(1S)Λ	(4.7±2.8	3) × 10 ⁻⁴	
$\rightarrow \Lambda_c^+ \pi^-$	seen		
$\Lambda_{c}^{+} a_{1}(1260)^{-}$	seen		
$ ightarrow \Lambda_c^+ \ell^- \overline{ u}_\ell$ anything	[t] (9.2±2.1	l)%	
🔶 р π^-	< 5.0	$ imes$ 10 $^{-5}$	
🔶 р К [—]	< 5.0	imes 10 ⁻⁵	
$\Lambda\gamma$	< 1.3	$ imes$ 10 $^{-3}$	

, This is all we know about Λ_{b} ...

Now, Fermilab Tevatron is the only facility that produces $\Lambda_{\rm b}$ and allows us to study $\Lambda_{\rm b}.$

HQET and HQE

Heavy Quark Effective Theory and Heavy Quark Expansion

HQET and HQE predict the b-hadron mass, branching fractions and lifetime

- > Assuming $m_b >> \Lambda_{QCD}$, the 3-body dynamics is reduced to 2-body heavy vs. light system.
- > The b quark can be treated the same way as the nucleus in the atom.
- > Little interaction between the heavy and light system.
- Relate the b-hadrons of different flavors
- Difference of b-hadrons are expressed in the power of $\frac{1}{m_{\rm b}}$ and $\alpha_{\rm s}(m_{\rm b})$
- Spin of di-quarks = 0, sub-leading order corrections are simpler than those of B mesons.

Measuring Λ_b mass, branching fractions, and lifetime tests HQET and HQE

independently from the B mesons.

CDF Detector

B Physics & **B** Triggers

- Huge production rates, 1000 times higher than at $e^+e^- \rightarrow \Upsilon(4S)$
 - ► $\sigma(pp \rightarrow bX, |y| < 0.6) = 17.6 \pm 0.4 \text{ (stat.)} \pm 2.5 \text{ (syst.)} \mu b$ PRD 71, 032001
- Heavy states produced
 - $\blacktriangleright B^0, B^+, B_s, B_c, \Lambda_b, \Xi_b$
- Backgrounds are also 3 orders of magnitude higher
 - Inelastic cross section ~100 mb
 - Challenge is to pick one B decay from ~10³ QCD events
- Di-muon trigger (lifetime, mass, branching ratios)
 - ▶ $p_T(\mu) > 1.5$ GeV/c, within J/ Ψ mass window
- Two displaced-tracks trigger (branching ratios)
 p_T > 2 GeV/c, 120 μm ≤ d₀ ≤ 1 mm, L_{xy} > 200 μm, Σ p_T > 5.5 GeV/c

Lepton + displaced-track trigger (lifetime, f_{baryon})

▶ $p_T(\mu,e) > 4 \text{ GeV/c}, 120 \ \mu m \le d_0 \le 1 \ mm, \ p_T > 2 \ GeV/c$

Silicon Vertex Trigger Impact Parameter (cm)

Previous Λ_b Results

Lifetime, Mass, and Branching Fractions

First measurement of $\tau(\Lambda_b)$ in a fully reconstructed mode $\Lambda_b \rightarrow J/\psi \Lambda$ dimuon trigger data $\tau = 1.25 \pm 0.26 \pm 0.10 \text{ ps}$

To be compared with the 2004 world average τ = 1.229 \pm 0.080 ps

■ Best single mass measurement Λ_b → J/ψ Λ dimuon trigger data M = 5619.7 ± 1.2 ± 1.2 MeV/c²

To be compared with the 2004 world average M = $5624.0 \pm 9.0 \text{ MeV/c}^2$

Relative BR $\frac{\sigma_{\Lambda_b}}{\sigma_{B^0}} \times \frac{B(\Lambda_b \to J/\psi \Lambda)}{B(\overline{B}^0 \to J/\psi K_s^0)} = 0.43 \pm 0.12 \text{ (stat)} \pm 0.08 \text{ (syst)}$

To be compared with the Run I result Ratio = 0.27 ± 0.12 (stat) ± 0.05 (syst)

 Best upper limit on Λ_b charmless decays two displaced track trigger data B(Λ_b pK+pπ) < 2.2 x 10⁻⁵ at 90% C.L To be compared with the 2004 world average B(Λ_b pK+pπ) < 5.0 x 10⁻⁵ at 90% C.L

Branching Fraction $\Lambda_{\rm b} \longrightarrow \Lambda_{\rm c} \pi^+$

Data come from two displaced track trigger

Background shapes obtained from Monte Carlo simulation:

mis- or partially reconstructed b-hadron decays

Fit to $\Lambda_{\mathbf{k}}$ mass: all reflections + exp. background

New Results

Why $B(\Lambda_{\text{b}} \rightarrow \Lambda_{\text{c}}\mu\upsilon)/B(\Lambda_{\text{b}} \rightarrow \Lambda_{\text{c}}\pi)$?

Similar Feynman diagrams. Theorists relate hadronic BR to easier and calculable semileptonic BR by factorization.

Differential semileptonic decay width is related to 6 form factors, reduced to one in HQET

$$\frac{d\Gamma}{dq^2} \propto \left|M\right|^2 \propto \left|V_{cb}\right|^2 \cdot \left(\sum_{i}^6 F_i(q^2)\right)^2 \quad \stackrel{\text{HQET}}{\Rightarrow} \quad \zeta(w) = e^{-\rho^2(w-1)}, \text{ where } w = \frac{m_{\Lambda_b}^2 + m_{\Lambda_c}^2 - q^2}{2m_{\Lambda_b}m_{\Lambda_c}}$$

I Close form of $\zeta(W)$ can be obtained using Large Nc Limits, QCD Sum Rules, and etc.

Predictions of Jenkins (*Nucl. Phys. B396, 38*), Huang, et al. (*hep-ph/0502004*) and Leibovich, Ligeti, Stewart, Wise (*Phys. Lett. B586, 337*) give a ratio of 15 with 10-30% error

Predicted
$$B(\Lambda_b \to \Lambda_c^+ \mu^- \overline{\nu}) = 6.6\%, \quad B(\Lambda_b \to \Lambda_c^+ \pi^-) = 0.45\%$$

How $B(\Lambda_{\scriptscriptstyle b} \to \Lambda_{\scriptscriptstyle c} \mu \upsilon)/B(\Lambda_{\scriptscriptstyle b} \to \Lambda_{\scriptscriptstyle c} \pi)$?

If hadronic BR is known, we can get V_{cb} from the semileptonic BR.

- Four charged tracks in the final state
- Control samples: similar decays in the B meson system

$$\frac{B(\overline{B}^{0} \to D^{+} \mu^{-} \overline{\nu})}{B(\overline{B}^{0} \to D^{+} \pi^{-})} \text{ and } \frac{B(\overline{B}^{0} \to D^{*+} \mu^{-} \overline{\nu})}{B(\overline{B}^{0} \to D^{*+} \pi^{-})}$$

$$\frac{B(\Lambda_{b} \to \Lambda_{c}^{+} \mu^{-} \overline{\nu})}{B(\Lambda_{b} \to \Lambda_{c}^{+} \pi^{-})} = \frac{N_{\Lambda_{b} \to \Lambda_{c} \mu \overline{\nu}} \times \mathcal{E}_{\Lambda_{b} \to \Lambda_{c} \pi}}{N_{\Lambda_{b} \to \Lambda_{c} \pi} \times \mathcal{E}_{\Lambda_{b} \to \Lambda_{c} \mu \overline{\nu}}}$$

But since we can not reconstruct neutrinos, several backgrounds can fake our semileptonic signals in the data

$$\frac{B(\Lambda_{b} \to \Lambda_{c}^{+} \mu^{-} \overline{\nu})}{B(\Lambda_{b} \to \Lambda_{c}^{+} \pi^{-})} = \frac{(N_{B_{\text{mix}} \to \Lambda_{c} \mu X} - N_{\text{bg}}) \times \mathcal{E}_{\Lambda_{b} \to \Lambda_{c} \pi}}{N_{\Lambda_{b} \to \Lambda_{c} \pi} \times \mathcal{E}_{\Lambda_{b} \to \Lambda_{c} \mu \overline{\nu}}}$$

 $\mathbf{\overline{V}}_{\mu}$

 $\rightarrow \mathbf{pK}^{-}\pi^{+}$

Control Sample $B^0 \rightarrow D^*X$, $D^{*+} \rightarrow D^0 \pi^+$, $D^0 \rightarrow K^-\pi^+$

Inclusive Semileptonic Signal

Hadronic Signal

Control Sample $B^0 \rightarrow DX$, $D^+ \rightarrow K^-\pi^+\pi^+$

Inclusive Semileptonic Signal

Hadronic Signal

Signal Sample $\Lambda_{\rm b} \longrightarrow \Lambda_{\rm c} X \Lambda_{\rm c} \rightarrow p^+ \, {\rm K}^{-} \, \pi^+$

Inclusive Semileptonic Signal

Hadronic Signal

MC and Data Comparison

- We used MC to obtain relative efficiencies of signals and backgrounds.
- Compare MC and background subtracted signal distribution in the data.
- **I** Tune our MC if MC and data disagree, e.g: pT of b-hadron, $M(\Lambda_c \mu)$

Where Are the Semileptonic Backgrounds From?

- Background signature: a (charm, muon) in the final state and passes our selection cuts
 - Physics Background
 - Muon Fakes
 - ▶ QCD $bb, c\overline{c}$

Physics Background

- Physics Background
 - b-hadron decays into a charm, a μ and additional particles, e.g:

$$\Lambda_{b} \to \Lambda_{c}^{+}(2593) \mu \overline{\nu} \\ \to \Lambda_{c}^{+} \pi^{+} \pi^{-}$$

- ▶ Reduced by the $M(\Lambda_c \mu)$ cut
- Normalize the amount to the measured hadronic signal

$$\frac{N_{\rm physics}}{N_{\rm hadronic}} = \frac{\sum_{i} B_{\rm physics} \times \varepsilon_{\rm physics}}{B_{\rm hadronic} \times \varepsilon_{\rm hadronic}}$$

- BRs come from PDG, theoretical estimate and preliminary measurements
- 10~40% contribution

First Observation of $\Lambda_{\rm b} \to \Lambda_{\rm c} \ \mu\nu, \Lambda_{\rm b} \to \Sigma_{\rm c} \pi\mu\nu$

First observation of several $\Lambda_{\rm b}$ semileptonic CDF Run II Preliminary 360 pb⁻¹ decays that can fake the signal $\Lambda_{h} \rightarrow \Lambda_{c}^{+} \mu v$ N / 1.5 MeV/c² 50 Λ_{c} sideband Estimate the BR based on the observation 40 mass 30 Λ_c(2625) 2.6 $\Lambda_{c}(2593)$ 20 D-wave CDF Run II Preliminary 360 pb-N / 1.5 MeV/c² $3/2^{1}$ 50 Λ_{c} sideband 2.5 S-wave 60.18 Μ(Λ_cπ+)-Μ(Λ_c) 0.16 0.20 0.22 40 [GeV/c²] 2π $\Sigma_{c}^{++,+,0}$ 30 2.4 20 P-wave 10 2.3 0.16 0.17 0.18 0.19 0.14 0.15 0.20 0.21 0.22 -1/2⁺ $M(\Lambda_c\pi)-M(\Lambda_c)$ CDF Run II Preliminary 360 pb⁻¹ N / 2 MeV/c² 35 $\Lambda_{\rm c}(2625)$ 2.2L $\Lambda_{\rm o}$ sideband 30 $\Lambda_{\rm c}$ - type $\Sigma_{\rm c}$ - type 25 20 $\Lambda_{\rm c}$ (2593) 15 10 0.30 0.40 0.35 $M(\Lambda_c \pi^+ \pi^-) - M(\Lambda_c)$ [GeV/c²]

How to Obtain $B(\Lambda_b \to \Lambda_c \pi)$?

Make use of previous CDF measurements

$$\frac{\sigma_{\Lambda_b}(P_T > 6\,GeV/c)}{\sigma_{B^0}(P_T > 6\,GeV/c)} \times \frac{B(\Lambda_b \to \Lambda_c^+ \pi^-)}{B(\overline{B}^0 \to D^- \pi^-)} = 0.82 \pm 0.08(\text{stat}) \pm 0.11(\text{syst}) \pm 0.22 \ (\Lambda_c \text{ BR}) \quad CDF \ Run \ I \ \frac{f_{\text{baryon}}}{f_d} = 0.236 \pm 0.084$$

Consistent with the prediction 0.45% (Phys. Lett. B586, 337)

Muon Fakes

Muon fakes

- **•** p, K, π fake muons
- cτ and muon d₀ cuts suppress fakes from the primary vertex
- Our fakes mostly come from b decays.
- Weight "charm+TRK_{failµ}" events with muon fake prob.
- Fit the weighted mass
- ► ~5% contribution

QCD Pair Production

• QCD: $b\overline{b}, c\overline{c}$

- charm and µ come from different b- or charmed hadrons
- b, c quarks are pair produced and fragmented into two hadrons
- **>** Suppressed due to the $c\tau$ and $P_T(\mu)$ cuts
- Rely on Pythia MC
- Most sensitive to gluon splitting
- Compare data and MC single hadron production -> 10~40% difference
- ► 1~2% contribution

Semileptonic Background Summary

	N _{bg} /N _{inclusive} (%)		
	$Λ_{c}$ μ	Dμ	D * μ
Physics	9.8	40.0	15.0
Fakes	3.2	4.9	4.3
$b\overline{b},c\overline{c}$	0.2	1.2	0.9
Total	13.2	46.1	20.2

Relative BR with Statistical Uncertainty

$$\frac{B(\overline{B}^{0} \to D^{+} \mu^{-} \overline{\nu})}{B(\overline{B}^{0} \to D^{+} \pi^{-})} = 9.8 \pm 1.0 \text{ (stat)}$$

$$\frac{B(\overline{B}^{0} \to D^{*+} \mu^{-} \overline{\nu})}{B(\overline{B}^{0} \to D^{*+} \pi^{-})} = 17.7 \pm 2.3 \,(\text{stat})$$

$$\frac{B(\Lambda_b \to \Lambda_c^+ \mu^- \overline{\nu})}{B(\Lambda_b \to \Lambda_c^+ \pi^-)} = 20.0 \pm 3.0 \,(\text{stat})$$

Systematics

Physics background and hadronic signal branching fractions

- Measured: from PDG
- Estimated or Unmeasured
 - ▶ 5% for charm decays
 - ▶ 100% for b-hadron decays

Mass fitting model

- > Vary the constant parameters in the fit
- Several background shapes come from inclusive MC
 - vary BR of the dominant decays

Muon fake estimate

- > Data sample size for the measurement of muon fake probability
- > Uncertainty of the proton, kaon, pion fractions in the hadron tracks

MC modeling of acceptance and efficiency

- > pT spectrum
- muon reconstruction efficiency scaling
- > QCD process
- detector material
- > Λ_c Dalitz structure, Λ_b lifetime, Λ_c and Λ_b polarizations
- $> \Lambda_{\rm b}$ semileptonic decay model

Uncertainty Summary

	fractional uncertainty (%)		
	$\frac{B(\Lambda_b \to \Lambda_c^+ \mu^- \overline{\nu})}{B(\Lambda_b \to \Lambda_c^+ \pi^-)}$	$\frac{B(\overline{B}^{0} \to D^{+} \mu^{-} \overline{\nu})}{B(\overline{B}^{0} \to D^{+} \pi^{-})}$	$\frac{B(\overline{B}^{0} \to D^{*+} \mu^{-} \overline{\nu})}{B(\overline{B}^{0} \to D^{*+} \pi^{-})}$
Measured BR	+3.5 -10.5	± 8.2	± 2.3
Estimated BR	± 2.5	± 9.2	± 6.2
CDF Internal			
Mass fitting	± 3.2	± 4.1	< ± 0.1
Pt spectrum	+1.4-2.5	± 3.2	± 2.2
Detector material	± 1.1	± 1.7	± 1.3
Muon fake	± 0.9	± 0.7	± 0.4
ϵ scaling	± 0.4	± 0.5	± 0.4
$b\overline{b},c\overline{c}$	± 0.2	± 2.2	± 1.3
$\Lambda_{\rm c}\Lambda_{\rm b}$ polarizations	± 1.9		
Λ_{c} Dalitz	± 0.4		
$\Lambda_{\rm b}$ lifetime	± 1.1		
$\Lambda_{\rm b}$ decay model	± 2.9		
	± 6.0	± 6.1	± 3.4
Statistical	± 15.0	± 10.2	± 13.0

Control Sample Result

$$\frac{B(\overline{B}^{0} \rightarrow D^{+} \mu^{-} \overline{\nu})}{B(\overline{B}^{0} \rightarrow D^{+} \pi^{-})} = 9.8 \pm 1.0 \text{ (stat)} \pm 0.6 \text{ (syst)} \pm 0.8 \text{ (BR)} \pm 0.9 \text{ (UBR)}$$
Consistent with the 2004 world average 7.8 ± 1.0 at the 1 σ level New world average ratio 8.3 ± 0.9

$$\frac{B(\overline{B}^{0} \to D^{*+} \mu^{-} \overline{\nu})}{B(\overline{B}^{0} \to D^{*+} \pi^{-})} = 17.7 \pm 2.3 \text{ (stat)} \pm 0.6 \text{ (syst)} \pm 0.4 \text{ (BR)} \pm 1.1 \text{ (UBR)}$$

Consistent with the 2004 world average 19.7 \pm 1.7 at the 0.7 σ level New world average ratio 19.1 \pm 1.4

Signal Sample Result

- Experimental Uncertainties dominated by:
 - Data sample size
 - > Measured BR $B(\Lambda_b \to \Lambda_c \pi)$

▶ Reminder: physics backgrounds are normalized to hadronic signal ▶ Dominated by the uncertainties on the production cross-section and $B(\Lambda_c - pK\pi)$

$B(\Lambda_{\rm b} \rightarrow \Lambda_{\rm c} \,\mu \upsilon)?$

Combined the ratio of BR and $B(\Lambda_b \rightarrow \Lambda_c \pi)$, we have

$$B(\Lambda_b \to \Lambda_c^+ \mu^- \overline{\nu}) = \left(8.1 \pm 1.2 (\text{stat})^{+1.1}_{-1.6} (\text{syst}) \pm 4.3 (B(\Lambda_b \to \Lambda_c^+ \pi^-))\right) \%$$

Consistent with DELPHI result (Phys. Lett. B585, 63)

$$B(\Lambda_b \to \Lambda_c^+ \mu^- \overline{\nu})^{\text{DELPHI}} = \left(5.0 \frac{+1.1}{-0.9} (\text{stat}) \frac{+1.6}{-1.2} (\text{syst})\right)\%$$

Weighted average

$$B(\Lambda_b \to \Lambda_c^+ \mu^- \overline{\nu})^{\text{WORLD}} = (5.5 \pm 1.8(\text{stat} + \text{syst}))\%$$

Also in agreement with the theoretical prediction 6.6% (Phys. Lett. B586, 337)

IV_{cb} Exercise

▶ Plug in the weighted average and the theoretical slope parameter of the ISGW function into the formula for $B(\Lambda_b \rightarrow \Lambda_c \mu \upsilon)$

$$\Lambda_{\rm b} |V_{\rm cb}| = 0.038 \pm 0.006 \,(\text{exp}) \pm (0.002 \sim 0.006) \,(\text{theory})$$

Consistent with the $|V_{cb}|$ from DELPHI measured with B->D*I $_{0}$ decays (*Eur. Phys. J C33, 213*)

B meson $|V_{cb}| = 0.0414 \pm 0.0024 \text{ (exp)} \pm (0.0018) \text{ (theory)}\&$

First Observation of $\Lambda_b \rightarrow \Lambda_c \pi \pi \pi \pi$

- Data come from two displaced track trigger
- $\Lambda_c \pi \pi$ Dalitz structure study in progress

Conclusions

Previous Λ_b Results

- First time $\Lambda_{\rm b}$ lifetime is measured in a fully reconstructed decay
- Best single mass measurement
- Improved upper limit of $B(\Lambda_b \text{ ph})$ by more than a factor of 2
- First unambiguous signal of $\Lambda_b \rightarrow \Lambda_c \pi$
- First measurement of

$$\frac{\sigma_{\Lambda_b}(P_T > 6 \, GeV/c)}{\sigma_{B^0}(P_T > 6 \, GeV/c)} \times \frac{B(\Lambda_b \to \Lambda_c^+ \pi^-)}{B(\overline{B}^0 \to D^- \pi^-)}$$

New Results

First measurement of $\frac{B(\Lambda_b \to \Lambda_c^+ \mu^- \overline{\nu})}{B(\Lambda_b \to \Lambda_c^+ \pi^-)}$

Both ratio and absolute BRs are in agreement with the prediction

First observation of $\Lambda_{\rm b} \to \Lambda_{\rm c} \pi \pi \pi, \Lambda_{\rm b} \to \Lambda_{\rm c}^{*} \mu \nu, \Lambda_{\rm b} \to \Sigma_{\rm c} \pi \mu \nu$

What Do We Know About $\Lambda_{\rm b}$ Now?

Mass m = 5619.9 \pm 1.7 MeV/c² Mean life $\tau = (1.229 \pm 0.080) \times 10^{-12}$ s $c\tau = 368 \ \mu$ m

16 DECAY MODES

Fraction (Γ_i/Γ)

$J/\psi(1S)\Lambda$	$(4.7\pm2.8) \times 10^{-4}$		
$\Lambda_{c}^{+}\pi^{-}$	(4.1 ± 2.0) x 10 ⁻³		
$\Lambda_{c}^{+} a_{1}(1260)^{-}$	seen		
$Λ_{c}/υ$	(5.5 ± 1.8) %		
pK + pπ	< 2.2 x 10 ⁻⁵		
$\Lambda_{c}^{+}\pi^{-}\pi^{-}\pi^{+}$	seen		
$\Lambda \dot{\gamma}$	$< 1.3 \times 10^{-3}$		
Λ _c (2593) ⁺ /υ	seen		
Λ _c (2625) ⁺/υ	seen		
$\Sigma_{c}^{++} \pi^{-}/\upsilon$	seen		
$\Sigma_{c}^{0} \pi^{+} / \upsilon$	seen		

Future

Most analyses are still statistically limited, more data in the future will improve the result

> $\Lambda_b \rightarrow J/\psi \Lambda$ lifetime analysis with 5x data expected

- TOF+dE/dx combined PID will be used in the search for Λ_{b} ph
- f_{baryon/}f_d using the lepton+displaced track trigger data anticipated
- Lifetime and branching fraction measurement from $\Lambda_{\rm b} \rightarrow \Lambda_{\rm c} \pi \pi \pi$
- $\Lambda_{\rm b} \to \Lambda_{\rm c} \, \mu \nu \text{ form factor}$

$\blacksquare \Lambda_{b} \text{ polarizations}$

Back Up Slides

Tevatron & CDF Luminosity

Collider Run II Peak Luminosity

Lifetime $\Lambda_{\rm b} \longrightarrow J/\psi \Lambda J/\psi \rightarrow \mu^+ \mu^-, \Lambda \rightarrow p^+ \pi^-$

First measurement of $\tau(\Lambda_b)$ in a fully reconstructed mode dimuon trigger data $\Lambda_b \rightarrow \Lambda_c lv (\Lambda_c \rightarrow pK\pi) \tau = 1.33 \pm 0.15 \pm 0.07 ps$

2004 World average $\tau(\Lambda_{\rm b}) = 1.229 \pm 0.080 \, \rm ps$

Mass $\Lambda_{\rm b} \longrightarrow J/\psi \Lambda_{\rm J/\psi \rightarrow \mu^+ \mu^-, \Lambda \rightarrow p^+ \pi^-}$

Best single mass measurement Data come rom the dimuon trigger

Calibrate mass with the J/Ψ sample

CDF Run Λ_{b} mass = 5621.0 ± 4.0 ± 3.0 MeV/c²

CDF II $M(\Lambda_b) = 5619.7 \pm 1.2 \text{ (stat.)} \pm 1.2 \text{ (syst.) MeV/c}^2$ 2004 World average $M(\Lambda_b) = 5624.0 \pm 9.0 \text{ MeV/c}^2$

Branching Fraction $\Lambda_{\rm b} \longrightarrow J/\psi \Lambda J/\psi \rightarrow \mu^+ \mu^-, \Lambda \rightarrow p^+ \pi^-$

Data come from the dimuon trigger

CDF Run

$$\frac{\sigma_{\Lambda_b}}{\sigma_{B^0}} \times \frac{B(\Lambda_b \to J/\psi \Lambda)}{B(\overline{B}^0 \to J/\psi K_s^0)} = 0.27 \pm 0.12(stat) \pm 0.05(syst)$$

Pion from the Λ is soft, can not rely on the MC to get the tracking efficiency for pT < 0.5 GeV/c.</p>

 \blacktriangleright studied by embedding simulated signal hits in the J/ ψ data.

Shin-Shan Yu

Search for $\Lambda_{\rm b} \rightarrow pK, p\pi$

- Data come from two displaced track trigger
- Mohanta, Phys. Rev. D63:074001,2001 Prediction:
 - ► B(Λ_b pK)=(1.4~1.9)×10⁻⁶
 - ► B(Λ_b pπ)=(0.8~1.2)×10⁻⁶
 - compare to
 - *B*(*B0* $K\pi$)= (18.5 ± 1.1)×10⁻⁶
- Normalized to $B(B0 \ K\pi)$
- Assigned π mass to both tracks to maximize the separation from B hh
- Large CP assymetry O(10%) expected
- Improved previous upper limit

CDF II
$$B(\Lambda_b)$$
pK+p π) < 22 x 10⁻⁶ at 90% C.LPDG 2004 $B(\Lambda_b)$ pK) < 50 x 10⁻⁶ at 90% C.LPDG 2004 $B(\Lambda_b)$ $p\pi$) < 50 x 10⁻⁶ at 90% C.L

Control Sample Analysis Requirements

Signal Sample Analysis Requirements

Consistency Check

