Standard Model Higgs Boson Searches with CDF

Tom Junk

University of Illinois at Urbana-Champaign for the CDF Collaboration

- Tevatron Status and Upgrades
- CDF Detector
- Searches for Higgsstrahlung
- Searches for $H \rightarrow W^+W^-$

Tevatron Luminosity Steadily Increasing

- Increased antiproton production rate
 - More protons on target
 - Slip-Stacking
 - Mixed Recycler/Accumulator shots
- Increased efficiency of transfers
- Increased reliability of Tevatron operation

We're on the Design Luminosity Track

But still a long road ahead to get to 8 fb⁻¹

Future Improvements:

• Electron Cooling of antiproton beam in Main Injector

Detector Stability -- Wire Chamber and Silicon

Wire chamber gain deteriorated with increased integrated luminosity in 2004. Cured with oxygen therapy. O_2 prevents aging in 2005.

Beam incidents (abort kicker prefires) current concern. Leads to damage in silicon detector. So far, very little damage.

Black: powered; Green: good; Red: bad, Pink: error rate

Standard Model Higgs Production Mechanisms

Gluon fusion process dominant in SM. Difficult to separate from backgrounds.

"Higgsstrahlung" -- Gauge Boson can be W or Z. Distinctive Lepton signatures and b-tagging for low-mass Higgs

Standard Model Higgs Decay Modes

Channels are identified by production and decay mode

Some Guidance from SM EW Fits

SM Channels with $H^0 \rightarrow b\overline{b}$

• $W^{\pm}H^{0} \to \ell^{\pm}\nu b\overline{b}$

- Needs High-efficiency, high-purity b-tagging
- Needs Lepton identification + Missing E_T reconstruction
- Needs Dijet Mass Resolution
- Backgrounds: $Wb\overline{b}$, W+2 partons + fake tag, t, $t\overline{t}$, non W

• $Z^0 H^0 \to \nu \overline{\nu} b \overline{b}$

- Needs High-Efficiency, high-purity b-tagging
- Needs Missing-E_T reconstruction
- Needs Dijet Mass Resolution
- Has acceptance for $W^{\pm}H^{0} \rightarrow \ell^{\pm}\nu b\bar{b}$ with a missing lepton
- Backgrounds: QCD, $Z^0 b\overline{b}$, Z + 2 partons + fake tag, t, $t\overline{t}$
- $Z^0 H^0 \to \ell^+ \ell^- b \overline{b}$
 - Low Backgrounds! Z sample is very clean
 - Needs High-Efficiency, high-purity b-tagging
 - Needs Dijet Mass Resolution
 - Backgrounds: $Z^0 b \overline{b}$, Z + 2 partons + fake tag

SM Channels with $H^0 \to W^+ W^-$

- $gg \to H^0 \to W^+W^-$
 - Seek opposite-sign dileptons, (e or μ) and Missing E_T
 - Main Background: 12 pb of SM W⁺W⁻ production.
 Also: WZ, ZZ, Z→l⁺l⁻
- $W^{\pm}H^0 \rightarrow W^{\pm}W^+W^-$
 - Seek like-sign dileptons -- much lower background!
 - Main background: Leptonically Decaying W, Z+ converted photon or other fake lepton. WZ, ZZ
 - Also sensitive to $Z^0 H^0 \rightarrow Z^0 W^+ W^-$

B-tag efficiency

- s/b tradeoff: Leptons & Missing E_T are distinctive; real backgrounds have two b quarks. Single-tag is enough.
 Future: Combine single and double-tag analyses, do a tight-loose tag.
- Jet-probability tags are available but not yet used in Higgs analyses
 -- more complication for estimating mistags

Mistag rates typically ~0.5% for displaced vertex tags

$W^{\pm}H^{0} \rightarrow \ell^{\pm}\nu b\overline{b}$ Selection

Isolated Central electron or muon (Et > 20 GeV) Rejection of Z⁰, photon conversions, cosmic rays

Missing $E_T > 20$ GeV Two jets with $E_T > 15$ GeV, $|\eta| < 2$ At least one Displaced Vertex b-tag Dijet mass resolution for this analysis: 18% (jet cone size=0.4, unsophisticated m_{ii})

χ² / ndf

64.9/1

CDF sees $Z \rightarrow bb$ decays in Run 2

$W^{\pm}H^{0} \rightarrow \ell^{\pm}\nu b\overline{b}$ Background Estimations and Data

$$\int \mathcal{L}dt = 162 \text{ pb}^{-1}$$

Category	Events
Events before Tagging	2072
W+LF	14.1±2.6
W+HF	32.4 ± 6.5
WW/ZZ/WZ/Z $\rightarrow \tau^+\tau^-$	2.5 ± 0.6
non-W	8.5 ± 1.2
top	8.9 ± 1.1
total Backgrounds	66.5 ± 9.0
Observed Postive tags	62

Data are well modeled for all jet multiplicities

Reconstructed Dijet Mass in the $W^{\pm}H^{0} \rightarrow \ell^{\pm}\nu b\overline{b}$ Channel

Cross-Section Limits are Close to Expectations for $\int \mathcal{L}dt = 162 \text{ pb}^{-1}$

Small Change to Analysis Allows Search for Technicolor Bosons

To search for technirho, compute M(Wbb):

Need Neutrino p_Z (have p_T =Missing E_T). Can solve (2-fold ambig.) assuming M(lv)=M_W

Reconstructed Wbb Mass and Dijet Mass

Limits on W-technipion Associated Production For Various Technirho Masses

Roadmap For Higher Sensitivity

- Improve dijet mass resolution
 - Jet cone size of 1.0
 - Associate tracks+ Clusters
 - B-specific adjustments
 - Advanced techniques
- Understand Backgrounds
 - More control samples
- Improve b-tag acceptance (forward b-tagging still in progress)
- Add more data (in progress)

$Z^0 H^0 \rightarrow \nu \overline{\nu} b \overline{b}$ Search

• Analysis is still blind -- working on backgrounds in control regions

- 1) Small $\Delta \Phi$ between Missing E_T and Jet 2 (selects QCD events)
- 2) Events with an energetic, isolated lepton (has Top, Electroweak backgrounds)

Check Pythia's QCD Modeling in Events where Missing E_T Is Close to a Jet

Mistags estimated from data.

Only shapes compared--Total prediction scaled to the data

Checking Top and Electroweak Backgrounds in Events with a Lepton

Some QCD present in this sample too -- normalization confirmed.

$Z^0 H^0 \rightarrow \nu \overline{\nu} b \overline{b}$ Selection Cut Optimizations

Extrapolating CDF's Run I vvbb Performance

- Run I analysis (single tag) -- best of The Higgssgrahlung chanels
 - Used 88 pb⁻¹ luminosity
 - Observed: 40 events
 - Expected: 39 ± 4 events
 - 95% C.L. on $\sigma_{ZH} * Br : 8.0 \ pb$
- Run II Expectations based on Run I's vvbb analysis
 - For 350 pb⁻¹ data
 - $\sigma_{ZH} * Br < \sim 4.3 \text{ pb}$

Dijet mass resolution ideas apply to this channel too!

Getting Started with $Z^0 H^0 \rightarrow \ell^+ \ell^- b \overline{b}$

- Selection:
 - $Z^0 \rightarrow e^+e^-$ or $\mu^+\mu^-$
 - 2 or 3 jets, at least one b-tag
 - Low Missing E_T

Most of Background: Z⁰bb (Zcc and Zc and Z+LF also there)

Background: 3 events/100 pb⁻¹ Signal: 0.03 events/100 pb⁻¹

Electrons

Jets

Additional Discrimination Power in the $Z^0 H^0 \rightarrow \ell^+ \ell^- b \overline{b}$ Channel

The $gg \to H \to W^+W^-$ Channel

Main Background: SM W⁺W⁻ production: Same final state.

Interference is not too much due to narrow Higgs width and zero spin

Leptons are emitted together preferentially in Higgs events.

The $gg \to H \to W^+W^-$ Channel Selection

- Two leptons, Each with $E_T > 20 \text{ GeV}$
- Jet Veto to remove t-tbar
- Missing $E_T > 25 \text{ GeV}$
- Z veto
- $m_{ll} < m_H/2$ -- note: background depends on test mass
- Acceptance is ~0.4% [including $Br^2(W \rightarrow l\nu)$] for $m_H > 160 \text{ GeV}$

Category	Events
WW	6.49 ± 0.76
Drell-Yan+WZ+ZZ+top	1.59 ± 0.48
Misid'd Leptons	0.81 ± 0.25
Total BG	8.90 ± 0.98
$H \rightarrow W^+ W^-$	0.17 ± 0.02
Observed	8

$$m_H = 180 \text{ GeV}, \ \int \mathcal{L} dt = 184 \text{ pb}^{-1}$$

$gg \to H \to W^+W^-$ Dilepton Angle and Limits

Likelihood calculation performed on all bins of $\Delta \Phi_{II}$

Analysis being upgraded to include more data and optimize cuts for Higgs search.

Search For $W^{\pm}H^{0} \rightarrow W^{\pm}W^{+}W^{-}$

- Like-sign dilepton selection ("1"=more energetic lepton, "2"=less energetic)
 - $p_{T,1} > 20 \text{ GeV}, p_{T,2} > 6 \text{ GeV}$
 - reject conversions, cosmics, $Z \rightarrow$ leptons
 - Signal region: $p_{T,2}>16 \text{ GeV}$, $p_{T,12} = |\vec{p}_{T,1} + \vec{p}_{T,2}| > 35 \text{ GeV}$ for $m_{\text{H}}<160 \text{ GeV}$. Harden $p_{T,2}$ cut to 18 GeV for $m_{\text{H}}>160 \text{ GeV}$

Category	Events in 193.5 pb ⁻¹
Conversions	0.61 ± 0.61
Fake Leptons	0.12 ± 0.01
Other sources*	0.22 ± 0.10
Total background	0.95 ± 0.64
Data	0

*Other backgrounds: Diboson, top, Wqq SM WH signal: 0.03 events (m_H =160 GeV)

$$W^{\pm}H^{0} \rightarrow W^{\pm}W^{+}W^{-}$$
 Data and Limits

Lumi Goal

over significant preferred range of m_H

m_H (GeV)

Fermilab-PUB-03/320-E

Backup Slides

COT Performance in 2005 -- Aging Controlled

The $gg \to H \to W^+W^-$ Channel

Higgs mass (GeV)	140	150	160	170	180
cross-section(gg> h^0) (pb)	0.45	0.36	0.30	0.25	0.21
branching ratio(H> WW)	0.48	0.68	0.90	0.97	0.94
integrated luminosity (pb-1)	184 +/- 11	184 +/- 11	184 +/- 11	184 +/- 11	184 +/- 11
total acceptance (%)	0.124 +/- 0.012	0.228 +/- 0.023	0.402 +/- 0.040	0.476 +/- 0.048	0.449 +/- 0.045
expected signal (event)	0.10 +/- 0.01	0.15 +/- 0.02	0.22 +/- 0.03	0.22 +/- 0.03	0.17 +/- 0.02
WW background (event)	3.51 +/- 0.41	3.82 +/- 0.45	4.45 +/- 0.52	5.38 +/- 0.63	6.49 +/- 0.76
other background (event)	0.68 +/- 0.16	0.90 +/- 0.24	1.34 +/- 0.35	1.91 +/- 0.47	2.40 +/- 0.55
candidate data (event)	2	2	3	7	8
95% CL limit - counting (pb)	18.4	9.8	6.2	8.2	8.8
expected limit - delta phi (pb)	18.1	9.8	6.0	7.4	8.0
95% CL limit - delta phi (pb)	17.8	9.4	5.6	5.6	6.4

WW $\rightarrow ee_{VV}$ candidate

 $\begin{array}{l} {\bf Run \ 162175 \ Event \ 1550545 : \ WW \to e^+ \nu_e \mu^- \bar{\nu}_\mu \ {\bf Candidate} \\ \hline p_T(e) = 112.7 \ {\rm GeV/c}; \quad p_T(\mu) = 57.0 \ {\rm GeV/c}; \quad M_{e\mu} = 165.6 \ {\rm GeV} \\ \hline {\it E}_T = 86.8 \ {\rm GeV}; \quad \Phi({\it E}_T) = 1.6 \\ \hline \Delta \Phi({\it E}_T, {\rm lepton}) = 1.2; \quad \Delta \Phi(e,\mu) = 2.4; \quad {\rm Opening-Angle}(e^+,e^-) = 1.9 \end{array}$

WW $\rightarrow e_{\mu\nu\nu}$ candidate

Projections with Electron Cooling of Antiprotons in Main Injector

Integrated Weekly Luminosity (pb-1)

On schedule to cool antiprotons in September 2005

electron gun; 2- main "gun solenoid"; 4 - electrostatic deflectors; - toroidal solenoid; 6 - main solenoid; 7 - collector; 8 - collector solenoid; 11 - main HV rectifier; 12 - collector cooling system. Like-Sign Dilepton Search is also Sensitive to $Z^0 H^0 \rightarrow Z^0 W^+ W^-$

(in spite of Z^0 veto -- second lepton can be lost)

For comparison -- Just WH

