

# Diffractive Structure Function and Exclusive Final States at CDF

### **Results and Prospects**

Koji Terashi The Rockefeller University for the CDF Collaboration



VANDERBILT UNIVERSITY Frontiers in Contemporary Physics - III Nashville, Tennessee, May 23-28, 2005

### **p**-p Interactions



### **Factorization and Diffraction**

<u>**QCD factorization</u></u> : \sigma(\bar{p}p \rightarrow \bar{p}X) \approx F\_{a/\bar{p}}^{D}(\xi,t;\beta,Q^{2}) \otimes \hat{\sigma}(ab \rightarrow jj)</u>** 



#### **Regge factorization** :



## **Diffractive Structure Function in Dijets**



# **F**<sup>D</sup><sub>ii</sub> measured using **SD** Dijets



#### **F**<sup>D</sup> measured using DPE Dijets $\frac{-D}{ij}(\beta)$ CDF data, based on DPE/SD 100 η $7 < E_{T}^{Jet1, 2} < 10 \text{ GeV}$ $R_{SD}^{DPE}$ 10 $0.035 < \xi_{\bar{p}} < 0.095$ $R_{ND}^{SD}$ 10 $0.01 < \xi_p < 0.03$ $|t_{\bar{p}}| < 1.0 \text{ GeV}^2$ R(x) per unit $\xi$ Expectation from H1 2002 o,D QCD Fit (prel.) 0.1 Ř(x) / ∆č 9.0 10 0.1 $F_{ii}^{D}(\beta)$ measured using DPE 0.1 10 10 <sup>-1</sup> -3 -2 10 dijets is approximately equal 10

 $R_{ND}^{SD} / R_{SD}^{DPE} = 0.19 \pm 0.07$ Factorization breakdown, but! dijets is approximately equal to expectations from HERA! → Factorization restored?

### **CDF II Forward Detectors**



## **MiniPlug Calorimeters**



### Run II Diffractive Dijet Sample



RP+J5 : Leading Antiproton in RP +  $\geq$ 1 Cal. Tower with  $E_{\tau}$ > 5 GeV

$$\xi_{\bar{p}}^{X} = \frac{M_{X}^{2}}{s} \approx \frac{\Sigma_{i} E_{T}^{i} e^{-\eta_{i}}}{\sqrt{s}}$$

> sum over all particles except antiproton > use calorimeter towers of  $E_{\tau}$  >100 MeV

> MiniPlug energy scale:  $\pm 25\% \rightarrow \Delta \log \xi = \pm 0.1$ 



## **Diffractive Structure Function in Run II**



Ratio of SD to ND dijet event rates as a function of  $x_{Bj}$ compared with Run I data

No  $\xi$  dependence observed within 0.03 <  $\xi_{\overline{p}}$  < 0.1 **Confirms Run I Result** 



Ratio of SD to ND dijet event rates as a function of  $x_{Bj}$  for different values of  $Q^2 \equiv E_{\tau}^{2}$ 

No appreciable  $Q^2$  dependence observed within  $100 < Q^2 < 1600 \text{ GeV}^2$ **Pomeron evolves like proton?** 

## Diffractive Structure Function : Run II Prospects

#### <u>GOAL</u> :

> Measure  $Q^2$  and  $\xi$  (at low  $\xi < 0.03$ ) dependence of  $F_{ii}^{D}$ 

> Study process dependence of **F**<sup>D</sup>

### **Q<sup>2</sup> Dependence :**

> Use RP + Higher  $E_{\tau}$  Jet ( $E_{\tau}$ >20 and 50 GeV) data

 $\rightarrow$  possible to explore even higher  $Q^2$  range with more statistics

### $\xi$ **Dependence** :

> Use BSC-Gap + Jet data to go below  $\xi = 0.03$ 

 $\rightarrow$  possible to extend  $\xi$  range down to 0.001 for  $Q^2 > 100 \text{ GeV}^2$ 

#### Process Dependence :

> Measure  $F^{D}$  from SD W (probing quark) and  $J/\Psi$  (probing gluon) events

### Exclusive Higgs at LHC



Khoze, Martin, Ryskin :  $\sigma_{H}^{excl} \sim 3$  fb, S/B ~ 3 @ LHC (if  $\Delta M_{miss} \approx 1$  GeV)

→ A potential discovery place at LHC

### **Exclusive Processes at Tevatron**



Establish exclusive processes experimentally (if exist)
 Measure cross sections or limits

→ Calibrate Higgs predictions at LHC

## Search for Exclusive Dijets



14

### **Dijet Mass Fraction in Run II**



- >100-fold increase in observed DPE dijets
- > Similar event yield at  $R_{ii}$ >0.8 regardless of gap requirements
- > Smoothly falling spectra all the way to  $R_{ii}=1$

### Limits on Exclusive Dijets

$$E_T^{\min} = 10 \text{ GeV}: 1.14 \pm 0.06(\text{stat}) + 0.47_{-0.45}(\text{syst}) \text{ nb}$$
  
 $E_T^{\min} = 25 \text{ GeV}: 25 \pm 3(\text{stat}) + 15_{-10}(\text{syst}) \text{ pb}$ 

 $E_{T}^{jet1,2} > E_{T}^{min} \text{ GeV},$   $|\eta_{jet1,2}| < 2.5,$   $0.03 < \xi_{\overline{p}} < 0.1,$  $3.6 < \eta_{gap} < 7.5$ 

#### **CDF Run II Preliminary**



### **Extracting Exclusive Dijets**

Bialas, Landshoff Berera, Collins Khoze, Martin, Ryskin

Exclusive qq suppression :

 $\sigma^{excl}(gg \to q\bar{q}) \sim (m_q^2/E_\tau^2) \sigma^{excl}(gg \to gg)$  $\to 0 \text{ as } m_q \to 0 \text{ or } E_\tau \gg m_q$ 

• " $J_z = 0$  spin selection rule"



gluon jets enriched at high  $R_{ii} \sim 1$ ?

Experiment

Theory



#### **Using b-Quark Jets**

gg → gg? Look for the suppression of b-quark jets in the exclusive region

© many exp. systematics canceled out

- © *b*-quarks identified well: *g* mistag\_@O(1%)
- $\otimes$  large  $m_b \rightarrow$  non-zero exclusive  $b\bar{b}$
- $\odot$  NLO background:  $g \rightarrow bb$ ,  $gg \rightarrow b\overline{b}g$ , etc

### **b-Quark Jet Yield : DPE vs ND**

**CDF Run II Preliminary** 0.06 Ratio  $DPE = SD_{\overline{p}} + GAP_{p}$  $SD_{\overline{D}}$  : 0.03 <  $\xi_{\overline{D}}$  < 0.1 **CDF Run II Preliminary**  $GAP_{p}: 5.5 < \eta_{gap} < 7.5$ ND П (b/Inclusive) DPE / (b/Inclusive) ND |η<sub>iet</sub>| < 1.5  $DPE = SD_n + GAP_p$ b/Inclusive 0.04  $SD_{\overline{n}}$  : 0.03 <  $\xi_{\overline{n}}$  < 0.1 **GAP**<sub>p</sub> : 5.5 < η<sub>αap</sub> < 7.5 1.5 |η<sub>iet</sub>| < 1.5 0.02 0.5 stat. ↑ ↑ Stat. ⊕ syst. stat. ↓ 🕇 | stat.⊕ syst. error 0 10 10 15 20 25 30 35 40 15 20 25 30 35 RAW P<sup>jet</sup><sub>T</sub> (GeV/c) RAW P<sup>jet</sup><sub>T</sub> (GeV/c) Ratio of b-jet to inclusive jet : Ratio of  $R_{b}^{DPE}$  to  $R_{b}^{ND}$ : DPE:  $2.43 \pm 0.17$ (stat)  $^{+0.58}_{-0.49}$ (syst) % 1.08 ± 0.08(stat) ± 0.22(syst) ND:  $2.24 \pm 0.06(\text{stat}) \stackrel{+0.43}{_{-0.34}}(\text{syst}) \%$  $10 < p_{\tau} < 40 \text{ GeV/c}, |\eta_{\text{iet}}| < 1.5$ 

# SecVtx Tag Fraction vs R<sub>jj</sub>





# **Exclusive** $\chi_c^0$ **Cross Section Limit**



## Exclusive Final States : Run II Prospects

#### <u>GOAL</u> :

Investigate existence/properties of exclusive final states
 Derive their cross sections or limits

#### **Exclusive Dijets :**

Ratio (*b*-jet / all) vs R<sub>jj</sub>
 More DPE *b*-jet data with new trigger

#### **Exclusive Low Mass States :**

>  $X_c^{0}$  : new data with DPE- $J/\Psi$  trigger >  $\gamma\gamma$  : new data with DPE- $\gamma\gamma$  trigger

# Analysis of exclusive physics in good progress



### Summary

### **Diffractive Structure Function** F<sup>D</sup>:

Re-established Run I results using single diffractive dijets

- >  $Q^2$  dependence of  $F_{ii}^{D}$   $\rightarrow$  Pomeron evolves like proton?
- > Studies of  $\xi$  and process dependence of  $F^{D}$  in progress

### **Exclusive Final States** :

Improved upper limit on exclusive dijet production

- > Obtained upper limit on exclusive  $\chi_c^0$  production
- > New DPE triggers ( $b\bar{b}$ ,  $X_c^0$  and  $\gamma\gamma$ ) taking more data



## Backup



## Diffractive Measurements in Run I



#### $F_{"}^{D}$ measured using SD J/ $\Psi$ Events Ratio of SD to ND $J/\Psi$ event rates R (SD/ND J/ψ Data as a function of $x_{Bi}$ at $\sqrt{s} = 1.8 \text{ TeV}$ **Dijet Data** x<sub>min</sub>=0.004 $x_{Bj}^{\pm} = \frac{p_{T}^{J/\psi}(e^{\pm \eta^{J/\psi}} + e^{\pm \eta^{jet}})}{\sqrt{2}}$ $x_{max} = \xi_{min} = 0.01$ 10 $\left[\frac{R_{jj}}{R_{J/\psi}}\right]_{exp} = \frac{\left(g^{D} + \frac{4}{9}q^{D}\right) \left(g^{ND} + \frac{4}{9}q^{ND}\right)}{\left(g^{D}/g^{ND}\right)}$ 10 $= 1.17 \pm 0.27$ (stat.) 10<sup>-3</sup> 10 -2 10 <sup>-1</sup> → Gluon fraction : $f_o^D = 0.59 \pm 0.15$ X-Bjorken cf. *W*, dijets, *b*-quark : $f_{g}^{D} = 0.54 \pm 0.15$

Factorization seems to hold between different processes at same c.m. energy at Tevatron

### Diffractive Structure Function measured using Single Diffractive Dijets at 630 GeV



## **Pomeron Structure : Comparison with UA8**



UA8 pioneered diffractive dijets in  $p\bar{p}$  collisions at  $\sqrt{s}=630 \text{ GeV} (Sp\bar{p}S)$ 

Pomeron structure from UA8 data :

| $\succ \delta(1 - \beta)$ | 1 | super-hard | 30 % |
|---------------------------|---|------------|------|
| $> 6\beta(1 - \beta)$     | 1 | hard       | 57 % |
| $> 6(1 - \beta)^5$        | 1 | soft       | 13 % |



630 GeV data re-analyzed à la UA8

x(2-jet) distributions are not inconsistent between UA8 and CDF

### **CDF Roman Pots**





- > Dipole Spectrometers (0.03<ξ<0.1)</p>
- Knowledge of the beam optics, collision vertex position, and a single RP hit allows us to reconstruct the kinematics of diffractive p



## **Concepts of CDF Roman Pot**



Bellows allow detectors to be moved in/out of the beamline while maintaining vacuum



motor to drive bellows

inside of pot

bellows detector goes inside pot



### **Roman Pot Detectors**

#### 3 pots each with

- Trigger counter 2.1x2.1x0.8 cm<sup>3</sup> scintillator
- 40X + 40Y fiber arrays, 1 array consists of 4 single clad 0.8x0.8 mm<sup>2</sup> fibers (KURARAY SCSF81)



trigger counter pulse height



## **Beam Shower Counters**



### SecVtx Mass

### <u>Strategy</u>

- Tag b-quark jets in DPE using secondary vertex (SecVtx)
- > Obtain b-quark fraction using SecVtx mass

SecVtx mass is a good discriminator for *b*-, *c*-, and *uds*-quark jets

PYTHIA : M<sub>SecVtx</sub> >2 GeV are all b-jets



### SecVtx Mass of Tagged Jets



### *b-Quark Jet Yield : DPE Narrow vs Wide Gap*

#### **CDF Run II Preliminary**



### Kinematic Distributions of Jets

#### **CDF Run II Preliminary**



#### **CDF Run II Preliminary**









### **Cross Section and Systematics**

> Energy Scale

$$\sigma_{DPE}^{jj}(R_{jj} > 0.8) = \frac{N_{DPE}^{PS}(1 - F_{BG})}{L \cdot \epsilon \cdot A}$$

Systematic uncertainties on the cross sections

- $N_{DPE}^{PS}$  : # of observed DPE events with  $R_{ii}$  > 0.8 corrected for
  - prescale factors,
  - live time acceptance,
  - multiple interactions
- $F_{BG}$ : Non-DPE background fraction
- L: integrated luminosity
- $\boldsymbol{\epsilon}$  : trigger and vertex cut efficiencies
- A : RP acceptance  $\approx 80\%$

$$(0.03 < \xi_{\overline{p}} < 0.1)$$

Calorimeter Jet  $E_{T}^{\min}$ Central/Plug MiniPlug +24 % +41 % +17 % ±28 % 10 -39 % -26 % -7 % +59 % +19 % +54 % 25 ±15 % -40 % -10 % -36 %

> RP acceptance ±10 %
> Luminosity ±6 %

TOTAL

### Systematic Uncertainties Summary

| <i>p</i> <sup><i>jet</i></sup> range (GeV/c) |                      | 10-15        | 15-25        | 25-40                  | 10-40        |  |  |
|----------------------------------------------|----------------------|--------------|--------------|------------------------|--------------|--|--|
| $R_b^{DPE}$                                  | $F_{b}$              | ±26%         | ±21%         | ±30%                   | ±19%         |  |  |
|                                              | $\epsilon^{b}_{tag}$ | ±7.4%        | ±8.9%        | ±4.9%                  | ±6.0%        |  |  |
|                                              | SecVtx acc.          | +10%         | +18%         | +13%                   | +14%         |  |  |
|                                              | Total                | +29%<br>-27% | +29%<br>-23% | +33%<br>-30%           | +24%<br>-20% |  |  |
|                                              |                      |              |              |                        |              |  |  |
| $R_b^{ND}$                                   | $F_{b}$              | ±22%         | ±16%         | ±27%                   | ±14%         |  |  |
|                                              | $\epsilon^{b}_{tag}$ | ±7.4%        | ±8.9%        | ±4.9%                  | ±6.0%        |  |  |
|                                              | SecVtx acc.          | +12%         | +11%         | +19%                   | +12%         |  |  |
|                                              | Total                | +26%<br>-23% | +21%<br>-18% | +33%<br>-27%           | +19%<br>-15% |  |  |
|                                              |                      |              |              |                        |              |  |  |
| $D_{ND}^{DPE}$                               | $F_{b}$              |              | ±16%         | ±16% (DPE) / ±10% (ND) |              |  |  |
|                                              | SecVtx acc.          | ±3%<br>±4%   |              |                        |              |  |  |
|                                              | Cal. Energy Sc       |              |              |                        |              |  |  |
|                                              | Total                |              | ±20%         |                        |              |  |  |