Diboson Physics at CDF

Mark Kruse Duke University

Frontiers in Contempory Physics Vanderbilt University, May 23-28 2005

Mark Kruse, 25 May 2005

Contents

Introduction
Current status of CDF and the Tevatron
W and Z studies
Wγ and Zγ production
WW, WZ and ZZ production
Prospects and Conclusions

Introduction

W's and Z's

- Large cross-sections/statistics
- Precision measurements
- Important calibrations

Diboson production

- Few pb cross-sections
- Beginning program of precision measurements
- Important SM tests
- Crucial for understanding and optimizing Higgs analyses

- Tevatron now performing well
- CDF detector running smoothly: data for analyses
 - 200 pb⁻¹ (Mar-02 to Aug-03) most results presented based on this data
 - 160 pb⁻¹ (Sep-03 to Oct-04) updates ongoing with new data
 - More data streaming in expect 1 fb⁻¹ by next year (as of a few days ago Tevatron has *delivered* 1 fb⁻¹)

W and Z production

Precision measurements using W and Z leptonic decays

- 2% systematics in e/μ channel (dominated by PDF's, lepton ID efficiency)
- Yardstick for validation of all high- E_{T} lepton analyses

More W and Z results from Run 2

• Branching ratios:

$$BR(W \to l \nu)_{CDF} = 10.89 \pm 0.22 \%$$
$$BR(W \to l \nu)_{WA} = 10.68 \pm 0.12 \%$$

$$\overline{\left(\frac{\mathrm{BR}(W \to \mu \nu)}{\mathrm{BR}(W \to e \nu)}\right)} = \frac{g_{\mu}^{W}}{g_{e}^{W}}(\mathrm{CDF}) = 0.998 \pm 0.012$$

$$\left|\frac{\mathrm{BR}(W \to \tau \nu)}{\mathrm{BR}(W \to e \nu)} = \frac{g_{\tau}''}{g_e^W}(\mathrm{CDF}) = 0.99 \pm 0.04\right|$$

Phys. Rev. Lett. 94 (2005) 091803 (with more details and updates soon to be submitted to PRD)

Many other W and Z measurements

- W charge asymmetry important for PDF fits
- Cross-sections using tau decays
- Differential cross-section measurements
- Forward-backward asymmetry of $Z/\gamma^* \rightarrow ee$
- W mass
- Many new results and methods out and in progress
 All provide important precision tests of the SM
- Rest of this talk on <u>diboson</u> measurements.....

Mark Kruse, 25 May 2005

Wy and Zy selection

- Select $W \rightarrow l\nu$ and $Z \rightarrow l^+l^-$ events
 - > High- E_{τ} electrons and muons (> 20 GeV)
 - > For W events: large missing- E_{T} and 30 < $M_{T}(1\nu)$ < 120 GeV
 - ► For Z events: $76 < M(l^+l^-) < 106 \text{ GeV}$
- Look for additional photons
 - > Isolated EM cluster with $E_{T} > 7 \text{ GeV}$
 - > $|\eta^{\gamma}| < 1.1$ and $\Delta R(1,\gamma) < 0.7$
 - ➢ High efficiency (>95%) after all ID
 - → Jet \rightarrow γ fake rate: about 0.2% at 7 GeV, 0.06% at 25 GeV

Wy results

	Electron	Muon	
$W+\gamma MC$	126.8 ± 5.8	95.2 ± 4.9	
W+jet BG	59.5 ± 18.1	27.6 ± 7.5	
W+ γ (tau)	1.5 ± 0.2	2.3 ± 0.2	
Ζ+ γ	6.3 ± 0.3	17.4 ± 1.0	
Total SM	194.1 ± 19.1	142.4 ± 9.5	
data	195	128	
σ*BR	19.4 ± 2.1 ± 2.9	16.3 ± 2.3 ± 1.8	

$$\sigma(W\gamma) \times BR(W \rightarrow l\nu) = 18.1 \pm 1.6_{(stat)} \pm 2.4_{(syst)} \pm 1.2_{(lum)} pb$$

 $\sigma(W\gamma) \times BR(W \rightarrow l\nu)_{SM} = 19.3 \pm 1.4 \, pb \quad \text{(Baur, Han, Ohnemus, 93/98)}$

Z*γ***results**

 $\sigma(Z\gamma) \times BR(Z \rightarrow l^+ l^-) = 4.6 \pm 0.5_{(stat)} \pm 0.2_{(syst)} \pm 0.3_{(lum)} pb$

 $\sigma(Z\gamma) \times BR(Z \rightarrow l^+ l^-)_{SM} = 4.5 \pm 0.3 \, pb$ (Baur, Han, Ohnemus, 93/98) Phys. Rev. Lett. 94 (2005) 041803

Mark Kruse, 25 May 2005

Wy and Zy kinematics

WW

Cross-section measured in <u>dilepton</u> channel

 $\blacktriangleright WW \rightarrow VVV(l=e,\mu)$

- BR small (about 5%) but good signal/background (about 2:1)
- Also important background for other analyses (tt, $H \rightarrow WW$, ...)

• Selection:

- > One isolated $E_{T} > 20$ GeV electron or muon
- > Missing $E_{T} > 25$ GeV
- Then: (1) <u>Dilepton</u>: 2nd isolated lepton, topological cuts, 0 jets
 (2) <u>Lepton + Track</u>: 2nd isolated track, topological cuts, 0 or 1 jets
 "Lepton + Track" analysis has larger acceptance and lower purity Main backgrounds: Drell-Yan, W + jets, tt

WW results

	DILEPTON	LEPTON+TRACK (STAT ERR.)	
WW Signal	11.3 ± 1.3	16.3 ± 0.4	
Drell–Yan Background	1.8 ± 0.4	1.8 ± 0.3	
Fake Background	1.1 ± 0.5	9.1 ± 0.8	
Other Background	1.9 ± 0.2	4.2 ± 0.1	
Total Background	4.8 ± 0.7	15.1 ± 0.9	
Total Expected	16.1 ± 1.6	31.5 ± 1.0	
Data Observed	17	39	
σ(WW) [pb]	$14.3^{+5.6}_{-4.9}(stat) \pm 1.6(syst) \pm 0.9(lum)$	$19.4 \pm 5.1(stat) \pm 3.5(syst) \pm 1.2(lum)$	

$$\sigma(WW) = \frac{N_{\text{DATA}} - N_{\text{BKG}}}{\epsilon \times L \times BR(WW \rightarrow l \nu l \nu)}$$

hep-ex/0501050, submitted to PRL

2 measurements consistent given estimated acceptance overlap
 Consistent with NLO prediction of 12.5 ± 0.8 pb (Campbell & Ellis, '99)

Selected candidates

Mark Kruse, 25 May 2005

Search for WZ / ZZ

CDF Run II		$\mathcal{L}=194~\mathrm{pb}^{-1}$		
Process	$l_1 l_2 l_3 l_4$	$l_1 l_2 l_3 E_T$	$l_1 l_2 E_T$	Combined
ZZ	0.07 ± 0.01	0.13 ± 0.01	0.87 ± 0.14	1.07 ± 0.15
ZW	-	0.81 ± 0.07	0.86 ± 0.14	1.67 ± 0.19
ZZ+ZW	0.07 ± 0.01	0.94 ± 0.08	1.73 ± 0.27	2.72 ± 0.33
WW	-	-	1.26 ± 0.20	1.26 ± 0.20
Fake	0.01 ± 0.02	0.07 ± 0.06	0.56 ± 0.30	0.64 ± 0.34
Drell-Yan	-	-	0.31 ± 0.13	0.31 ± 0.13
$t\bar{t}$	-	-	0.08 ± 0.02	0.08 ± 0.02
Total Background	0.01 ± 0.02	0.07 ± 0.06	2.21 ± 0.38	2.29 ± 0.42
Expected S. $+$ B.	0.08 ± 0.02	1.01 ± 0.10	3.94 ± 0.57	5.01 ± 0.64
Data	0	0	4	4

 $\sigma(pp \rightarrow WZ/ZZ) < 13.9 \, pb$

Phys. Rev. D 71, 091105 (2005)

 $\sigma(pp \rightarrow WZ/ZZ)_{NLO} = 5.0 \pm 0.4 \, pb$

Future diboson studies

- Use Wγ, Zγ, WW analyses to study the WWγ and WWZ couplings, and search for anomalous couplings
- About 1 fb⁻¹ required for observation of WZ and ZZ
- Additional final states for greater acceptance:
 - ➢ Hadronic decays of one V in WW, WZ, ZZ
 - > Include τ decays of V
- Optimize use of data by using a more global analysis approach.....

Global analysis approach

Relatively few SM processes in the high-E₁ dilepton channel

 \succ eµ the cleanest channel: processes have different characteristics:

 Exploit differences in Missing-E_T versus jet multiplicity, after requiring 2 isolated leptons

- Fit data to SM processes in this 2-D phase space
- Philosophy is not to "cut" backgrounds but rather include them in the fit, thereby significantly improving statistics

Global dilepton analysis

- Preliminary results of SM cross-section measurements encouraging – full statistical power of data being used
- Method may be particularly useful for new physics searches

significant MET required

Summary of measurements

- Diboson signals established and measured at the Tevatron:
- Wγ/Zγ with much
 greater precision than
 in Run 1
- WW for first time at the Tevatron
- WZ/ZZ not yet
 significant but
 observation expected
 soon

Conclusions

- A variety of diboson measurements now completed and published in Run 2 by CDF: $W\gamma/Z\gamma$ PRL, WW PRL, WZ/ZZ PRD.
- Current measurements use 200 pb⁻¹, but updates, optimizations, and new analyses, are round the corner with twice this luminosity.
- Looking forward to continued good Tevatron running, where, with substantially more data:
 - precision diboson measurements
 - discovery of WZ/ZZ production
 - discovery of, or stringent limits on, new physics (Higgs, anomalous couplings,....)
- Many new ideas and analyses now in full swing stay tuned