W Mass and Properties

Chris Hays Duke University

For the CDF and DØ Collaborations

XIII International Workshop on Deep Inelastic Scattering University of Wisconsin, Madison April 27, 2005

W Physics

Study of W bosons at Tevatron provides key SM parameters and constrains physics beyond the SM

W mass: Constrains Higgs mass and new particles coupling to *W W width:* Input for extracting CKM parameter V_{cs} *W/Z cross section ratio:* Sensitive to *W* width and CKM parameter V_{cs} *WVV couplings:* Probes new physics coupling to electroweak bosons

W measurements sensitive to parton distributions in proton

- > Longitudinal boost affects mass reconstruction and lepton acceptances
- ➤ Difference between u(x) and d(x) in proton causes ud→W⁺ and ud→W⁻ to be boosted in opposite directions

W charge asymmetry
W differential distributions} constrain parton distributions

W Mass in the Standard Model

SM predicts $m_{_{W}}$ in terms of *Z*, *t* masses and electroweak couplings "On-shell" scheme:

W Mass and Width at the Tevatron Run 1: Mass: 59 MeV combined uncertainty (79 CDF, 84 DØ), *L*~120 pb⁻¹ Width: 105 MeV uncertainty (120 CDF, 175 DØ) Central Calorimeter (F / Wall Calorimeter (H Run 2: $\mathcal{L} \sim 600 \text{ pb}^{-1}$ recorded per experiment Plug Calorimeter (E/H) Forward Muc ntegrated Luminosity (pb^-1) 800 CDF 600 500 Forward Calorimeter (E 400 Luminosity Monitor Time of Flight 300 Central Outer Tracker Silicon Vertex Detecto Intermediate Silicon 200 Forward Mini-drift Forward Scintillator **Central Scintillator** 100 chambers Defivered ·参小学家的爱情,资料和教育和教育,有小学和学校的关闭的在中国 SOUTH Dec 01 Dec 02 Dec 03 Dec 04 - <u>- - -</u> Time CDF: Shielding Analyzed first 200 pb⁻¹, determined W mass uncertainties in e and μ channels DØ: *Measured W width in 177 pb⁻¹ of electron data* New Solenoid, Tracking System Si. SciFi.Preshowers

C. Hays, Duke University, DIS '05

+ New Electronics, Trig, DAQ

4

W Mass at the Tevatron

Mass information comes primarily from lepton p_T > Run 2 goal: calibrate p_T to ~0.01%

Use Z decays to model boson p_T distribution, detector response to hadronic recoil energy Combine lepton and neutrino p_T to form transverse mass (m_T) for best statistical power $m_T^2 = 2p_T^{\ l}p_T^{\ v}(1-\cos\Delta\phi)$

C. Hays, Duke University, DIS '05

Additional information from v p_T (inferred through measurement of hadronic recoil energy)

W Mass at CDF

Combine electron and muon channels to increase statistical power

Strategy:

• Use muons from decays of low-mass resonances to calibrate tracker

- > Linear momentum response allows extrapolation to high masses
- Use electrons from W decays to calibrate calorimeter with track
- Model hadronic response using $Z \rightarrow ll$ events

W Mass Uncertainties at CDF

C. Hays, Duke University, DIS '05

CDF Event Generation

Precision of few parts in 10⁴ requires detailed model of measured line shapes

W/Z production:

Parton distribution functions determine boson η distribution m_T and p_T fits rely on accurate model of lepton η

 $\delta m_w = \pm 15 \text{ MeV}$ Determined using CTEQ eigenvectors, cross-checked with MRST

CDF Event Generation and Simulation

QCD corrections to W/Z production:

Model boson p_T using event generator (RESBOS) with next-to-leading log calculation, non-perturbative parameters constrained with Run 1 $Z p_T$ data

 $\delta m_w = \pm 13 \text{ MeV}$ \checkmark 27 MeV for lepton p_T fit

QED corrections to W/Z decay:

Simulate radiation of final state photons according to energy and spatial distributions from NLO event generator (WGRAD) **q**

 $\delta m_W = \pm 15-20 \text{ MeV}$

Detector simulation and reconstruction:

- Fast hit-level tracker simulation
- Model bremßtrahlung, ionization energy loss, γ conversion

CDF Muon Momentum Calibration

Set momentum scale using J/ψ and upsilon decays to muons

C. Hays, Duke University, DIS '05

CDF Electron Energy Calibration

Use calibrated tracks to set calorimeter electromagnetic energy scale

E/p peak in *W* → ev events determines energy scale *High statistics, similar energy distribution to measurement sample*

 $\delta m_w = \pm 35 \text{ MeV}$

E

CDF Hadronic Recoil Measurement Model

* Parametrize hadronic response: $R = u_{meas}/u_{true}$

* Resolution model combines terms from underlying event and jet resolution

Underlying event:

* independent of recoil

* resolution model tuned on minimum bias events

Jet resolution:

* accounts for resolution $p_T(Z)$ -dependence

* resolution ~ $[p_T(Z)]^{1/2}$

 $\delta m_w = \pm 20 \text{ MeV}$

C. Hays, Duke University, DIS '05

Tune parameters using $Z \rightarrow \mu \mu$ events

CDF W Mass Fits and Systematics

Total uncertainty 76 MeV (cf Run 1: 79 MeV)

DØ W Width Measurement

Width information in events with high $m_{_{T}}$

• Fit 625 candidate $W \rightarrow ev$ events in region 100 GeV < $m_{\tau} < 200$ GeV

 $\Gamma_{W} = 2.011 \pm 0.093 \pm 0.107 \text{ GeV}$ **D0 Run II Preliminary** 10' Events / 2 GeV Data -MC+Background Background 10² 10 120 140 160 180 200 60 80 100 M_⊤ (GeV)

Dominant systematic uncertainties:

* Electron scale and resolution $\delta \Gamma_W = \pm 55 \text{ MeV}$ * Recoil scale and resolution $\delta \Gamma_W = \pm 80 \text{ MeV}$

C. Hays, Duke University, DIS '05

Summary and Outlook

Tevatron W studies providing important SM measurements and constraints W mass and width measurements key components

Run 2 analyses in advanced stages

- 200 pb⁻¹ analyzed at CDF and W mass uncertainties determined
 - Run 2 W mass uncertainty: 76 MeV (Run 1: 79 MeV)
- DØ width measurement complete with 177 pb⁻¹
 - » Run 2 W width uncertainty: 142 MeV (Run 1: 173 MeV)

Run 2 will integrate 4 - 8 fb⁻¹

- *Expect to provide significant reduction in uncertainties*
 - > Mass: 40 MeV per experiment in Run 2
 - (current single most precise experiment: ALEPH, 58 MeV)
 - > Width: 50 MeV per experiment in Run 2

(current single most precise experiment: DELPHI, 120 MeV)