Searches for New Physics in the Flavour Sector

- Motivation
- Tevatron Detectors: CDF and D \varnothing
- Results
- Conclusion

Matthew Herndon

Johns Hopkins University

Deep Inelastic Scattering Workshop – Madison, Wisconsin April/May 2005

Searches For New Physics

- How do you search for new physics at a collider?
 - Direct searches for production of new particles
 - Particle-antipartical annihilation
 - Example: the top quark
 - Indirect searches for evidence of new particles
 - Within a complex decay new particles can occur virtually
- Tevatron is at the energy frontier and a data volume frontier
 - So much data that we can look for some very unusual decays
- Where to look
 - Many weak decays of B hadrons are very low probability
 - Look for contributions from other low probability processes Non Standard Model

A unique window of opportunity to find new physics before the LHC

Tevatron Performance

- 1.96TeV pp collider
 - Performance substantially improving each year
 - Record peak luminosity: 1.2x10³²sec⁻¹cm⁻²
 - Expect 2x in 2005, 4-8fb⁻¹ by 2009

- Integrated Luminosity
 - Experiments have over 500pb⁻¹ of good data
 - All critical systems operating including silicon
 - Analyses presented here use 180pb⁻¹ to 450pb⁻¹

Tevatron likely to have 4x data in next 2 years

CDF & DØ Detectors

EXCELLENT TRACKING

CDF: Silicon

- |η|<2, 90cm long
- Silicon vertex trigger
- Drift Chamber(COT)
 - 96 layers between 44 and 132cm
- Triggered muon coverage $|\eta| < 1.0$ Central Calorimeter (E/H) Central Muon Wall Calorimeter (H) Solenoid Plug Calorimeter (E/H) Forward Muon Forward Calorimeter (E) Luminosity Monitor Time of Flight Central Outer Tracker Silicon Vertex Detector Intermediate Silicon **DIS 2005**

- DØ Tracker
 - Scintillating fiber tracker and silicon
 - Triggered tracking to |η|<2
- Triggered muon coverage |η|<2

EXCELLENT MUON SYSTEM

M. Herndon

New Physics in $\Delta\Gamma_{Bs}$

M. Herndon

- $\Delta\Gamma_{Bs}$: Width-lifetime difference for light/heavy eigenstate decays
- New physics contributions in penguin diagrams
- $\Delta \Gamma_{B_s}^{(meas)} = \Delta \Gamma_{B_s}^{(CPcons)} \cos(\phi^{(SM)} + \phi^{(new \ physics)})$
- Measurement possibilities
 - Directly measure two lifetimes in $B_s \rightarrow J/\psi\phi$
 - Lifetime and angular analysis
 - Measure lifetime in $B_s \rightarrow KK$
 - 97% CP even(short component)
 - In progress: disentangle $B_{(s,d)} \rightarrow hh$ decays
 - Measure the branching ratio of $B_s \rightarrow D_s D_s$
 - Pure CP even state
 - May account for most of the width difference
 - Observed first double charm decay in $B \rightarrow DD_s$

$\Delta \Gamma_{Bs}$ Results

New Physics: Charmless B Decays

CP Asymmetries: A_{CP}

- Simplest case: A_{CP} in decay(Direct A_{CP}): difference in the decay rates of the CP eigenstates
- Eigenstate decays identified by decay products or angular distributions
- Can also occur in neutral meson decays with mixing
- Many charmless B decay modes are sensitive to A_{CP}
 - $B^+ \to \phi K^+$
 - SM A_{CP} rate expected to be small: Probe of new physics

$B^+ \rightarrow \phi K^+$ Results

- $B^+ \rightarrow \phi K^+$, $\phi \rightarrow K^+ K^-$
- Analysis Cuts
 - Momentum, lifetime and vertex cuts
 - $p_{_{TB}} > 4.0, |d_{_{0B}}| < 100 \text{ m}, L_{_{xy}} > 350 \mu \text{m}$
 - Results from likelihood fit to masses, dE/dx and helicity

Results:

 $A_{CP}(B^+ \to \phi K^+) = -0.07 \pm 0.17(stat)^{+0.03}_{-0.02}(sys)$ hep-ex/0502044

Babar result: $A_{CP} = 0.054 \pm 0.056(stat) \pm 0.012(sys)$ hep-ex/0408072

 $BF(B^+ \to \phi K^+) = (7.6 \pm 1.3(stat) \pm 0.6(sys)) \times 10^{-6}$ HFAG: (9.0±0.7)×10⁻⁶

- Signal
- Backgrounds
 - Combinatorial
 - Partially reconstructed B decays
 - $B \rightarrow f_0 K$
 - $B \rightarrow K^{\circ}\pi$, $K\pi\pi$ (Cyan)

$B_{s,d} \rightarrow hh$ Results

- $B_{s,d} \rightarrow hh \ (h = K,\pi)$
- Analysis Cuts
 - $\Sigma p_{T\pi} > 4.0$, $|d_{0B}| < 80$ m, $L_{xy} > 300 \mu m$
- Unbinned likelihood fit
 - $M_{\pi\pi}$, dE/dx, charge-momentum imbalance
 - Excellent mass resolution and high statistics samples for dE/dx calibration allow for small systematic errors

 $\frac{f_s \cdot BF(B_s \rightarrow K^{\pm} K^{\mp})}{f_d \cdot BF(B^0 \rightarrow K^{\pm} \pi^{\mp})} = 0.50 \pm 0.08(stat) \pm 0.09(sys)$

 $A_{CP}(B^0 \to K^{\pm} \pi^{\mp}) = -0.04 \pm 0.08(stat) \pm 0.006(sys)$

Babar result: $A_{CP} = -0.133 \pm 0.030(stat) \pm 0.009(sys)$ 4.2 σ hep-ex/0407057

Belle result: $A_{CP} = -0.101 \pm 0.025(stat) \pm 0.005(sys)$ 3.9 σ hep-ex/0408100 M. Herndon

B^{o}	ππ	134	15%
B^{o}	Κπ	509	57%
B _s	KK	232	26%
B_s	Κπ	18	2%

$B_s \rightarrow \phi \phi$ Results

$B_s \rightarrow \mu \mu$: Beyond the SM

Look at decays that are suppressed in the Standard Model: $B_{s(d)} \rightarrow \mu^+\mu^-$ Flavor changing neutral currents(FCNC) to leptons No tree level decay in SM Loop level transitions: suppressed CKM, GIM and helicity(m₁/m_b): suppressed h,Å,H • SM: $BF(B_{s(d)} \rightarrow \mu^+ \mu^-) = 3.5 \times 10^{-9} (1.0 \times 10^{-10})$ G. Buchalla, A. Buras, Nucl. Phys. B398,285 New physics possibilities Loop: MSSM: mSugra, Higgs Doublet 3 orders of magnitude enhancement • Rate $\propto \tan^6\beta/(M_{A})^4$ Babu and Kolda, Phys. Rev. Lett. 84, 228 Tree: R-Parity violating SUSY

One of the best indirect search channels at the Tevatron

$B_s \rightarrow \mu\mu$: Experimental Challenge

Primary problem is large background at hadron colliders

- Analysis and trigger cuts must effectively reduce the large background around $m_{Bs} = 5.37 \text{GeV/c}^2$ to find a possible handful of events
- BR 1000x SM rate results in ~200 events

D0 Analysis and Results

- 3 primary discriminating variables
 - L_{xy} Sig : $L_{xy} / \sigma_{Lxy} > 18.47$
 - $\Delta \Phi : \phi_B \phi_{vtx} > 0.203 rad$
 - Isolation: $p_{TB}/(\Sigma trk + p_{TB}) > 0.56$
- Choose 2σ mass window: σ = 90MeV/c²
- Optimization
 - Used simulated signal and data sidebands
 - Search of all cut combinations
- Relative normalization to $B^+ \rightarrow J/\psi K^+$
- Result:
- $BF(B_s \rightarrow \mu^+ \mu^-) < 3.7 \times 10^{-7} 95\%$ CL

D0 Conference Note 4733, 300pb⁻¹

CDF Discriminating Variables

CDF $B_{s(d)} \rightarrow \mu\mu$ Results

- CDF $B_{s(d)} \to \mu^+ \mu^-$ results
 - LH > 0.99
 - Expected backgrounds $B_{s(d)}$: 1.47 ± 0.18
 - Observe 0 events

World's best limits!

$$BF(B_{s} \to \mu^{+} \mu^{-}) < 2.0 \times 10^{-7} 95\% \text{ CL}$$
$$BF(B_{d} \to \mu^{+} \mu^{-}) < 4.9 \times 10^{-8} 95\% \text{ CL}$$

$$BF(B_s \rightarrow \mu^+ \mu^-) < 3.7 \times 10^{-7} 95\%$$
 CI
DØ Conf Note 4733, 300pb⁻¹

 $BF(B_d \rightarrow \mu^+ \mu^-) < 8.3 \times 10^{-8} 90 \% \text{ CL}$ BaBar hep-ex/0408096, 111fb⁻¹

CDF: $<3.8\times10^{-8}90\%$ CL

DIS 2005

$B_s \rightarrow \mu\mu$: MSSM

- No strong SUSY:MSSM limits from $B_s \rightarrow \mu^+ \mu^-$
 - Too many MSSM parameters
 - If $B_{s(d)} \rightarrow \mu^+ \mu^-$ observed: $M_A < 800 GeV$
 - $tan\beta = 50$

Does limit specific SUSY models

$B_s \rightarrow \mu\mu$: SUSY SO(10)

Excludes scenarios where m_A is light and $\tan\beta \sim 50$: $m_A > 500 \text{GeV/c}^2$

Conclusions

CDF: $\Delta \Gamma_{B_{c}} / \Gamma_{B_{c}} = 0.71^{+0.24}_{-0.28} \pm 0.01$

D0: $\Delta \Gamma_{B} / \Gamma_{B} = 0.21^{+0.33}_{-0.45}$

- Many posibilities to observe new physics in the flavour sector
- B_s part of the flavour sector particularly interesting at the Tevatron
- CDF observes a high $\Delta\Gamma_{Bs}$: 2 σ DØ value is high/compatible with SM
 - New physics would typically give a low value of $\Delta\Gamma_{Bs}$
 - Lifetimes in $B_s \to KK$ and $BR(B_s \to D_sD_s)$ next
- CDF has measured A_{cp} in several B modes
 - Systematic errors small Data set now 4x used for original measuments. Should be competative with B factories and have B_s measurements soon
- CDF/DØ have improved $B_{s(d)} \rightarrow \mu^+ \mu^-$ limits

lower than Babar limit

Combined B_s → μ⁺μ⁻ limit strongly restiricts the phase space of some new physics models
CDF B_d → μ⁺μ⁻ result 2x
CDF B_d → μ⁺μ⁻ result 2x
CDF: BF (B_d → μ⁺μ⁻) < 4.9 × 10⁻⁸ 95 % CL

 $B_{s(d)} \rightarrow \mu\mu$ Results

DIS 2005

Physics Reach mSugra

