

Rare Decays at the Tevatron

Sinéad M. Farrington University of Liverpool for the CDF and D0 Collaborations

> Beauty 05 21st June 2005

Outline

Overall motivations

•
$$\mathbf{B}_{\mathbf{d},\mathbf{s}}^{0} \rightarrow \mu^{+}\mu^{-}$$

- Motivation
- CDF and D0 methods
- CDF and D0 results

•
$$\mathbf{B}_{d,s}^{0} \rightarrow \mu^{+}\mu^{-} \mathbf{K}^{+}/\mathbf{K}^{*}/\phi$$

- Motivation
- D0 sensitivity analysis

For discussion of Charmless B decays see following talk by Simone Donati

Searching for New Physics

- Two ways to search for new physics:
 - direct searches seek e.g. Supersymmetric particles
 - indirect searches test for deviations from Standard Model predictions e.g. branching ratios
- In the absence of evidence for new physics
 - set limits on model parameters

 $B^{0}_{d,s} \rightarrow \mu^{+}\mu^{-}$

$\mathbf{B} \rightarrow \mu\mu$ in the Standard Model

• In Standard Model FCNC decay $B \rightarrow \mu\mu$ heavily suppressed

- Standard Model predicts $BR(B_s \rightarrow \mu^+ \mu^-) = (3.4 \pm 0.5) \times 10^{-9}$ A. Buras Phys. Lett. B 566,115
- $B_d \rightarrow \mu\mu$ further suppressed by CKM coupling $(V_{td}/V_{ts})^2$ $BR(B_d \rightarrow \mu^+\mu^-) = (1.00 \pm 0.14) \times 10^{-10}$
- Both below sensitivity of Tevatron experiments

Observe no events \Rightarrow set limits on new physics Observe events \Rightarrow clear evidence for new physics

$\mathbf{B} \rightarrow \mu\mu$ in New Physics Models

- SUSY could enhance BR by orders of magnitude
 - MSSM: BR(B $\rightarrow \mu\mu$) $\propto \tan^6\beta$
 - may be 100x Standard Model

- R-parity violating SUSY: tree level diagram via sneutrino
 - observe decay for low tan β
- mSUGRA: $B \rightarrow \mu\mu$ search complements direct SUSY searches
 - Low tan $\beta \Rightarrow$ observation of trilepton events
 - High tan $\beta \Rightarrow$ observation of B $\rightarrow \mu\mu$ A. Dedes et al, hep-ph/0207026
- Or something else!

The Challenge

- Large combinatorial background
- Key elements are
 - determine efficiencies
 - select discriminating variables
 - estimate background

Methodology

- Search for muon pairs in B_d/B_s mass windows
- D0 search for only B_s and correct for B_d decays
- Approximately 360pb⁻¹(CDF) /300pb⁻¹(D0) integrated luminosity
- Unbiased optimisation, signal region blind
- Aim to measure BR or set limit

$$BR(B_{s} \to \mu^{+}\mu^{-}) = \frac{N_{Bs}}{N_{B+}} \frac{\alpha_{B+} \cdot \varepsilon_{B+}^{total}}{\alpha_{Bs} \cdot \varepsilon_{Bs}^{total}} \frac{f_{u}}{f_{s}} BR(B^{+} \to J/\psi K^{+}) BR(J/\psi \to \mu^{+}\mu^{-})$$

- Reconstruct normalisation mode ($B^+ \rightarrow J/\psi K^+$)
- Construct discriminant to select B signal and suppress dimuon background (CDF)
- Use cuts analysis to suppress dimuon background (D0)
- Measure background
- Measure the acceptance and efficiency ratios

CDF

D0

- six dedicated rare B triggers
- using all chambers to |η|≤1.1
- excellent tracking

Central Muon Extension

(0.6< |η| < **1.0**)

- four dedicated rare B triggers
- using all chambers to $|\eta| \le 2.0$
- excellent muon coverage

Central Muon Chambers
(|η| < 0.6)
Use two types of muon pairs: central-central

central-extension

Muon Chambers

< 2.0)

Normalisation Mode (CDF)

• Reconstruct normalisation mode ($B^+ \rightarrow J/\psi K^+$)

B $\rightarrow \mu\mu$ **Optimisation (CDF)**

• Chosen three primary discriminating variables:

proper decay length (λ)

$$\lambda = \frac{cL_{3D}M_{vtx}}{\left|\vec{p}(B)\right|}$$

Pointing (\Delta \alpha) $|\phi_B - \phi_{vtx}|$

Isolation (Iso)

$$Iso = \frac{p_T(B)}{p_T(B) + \sum_i p_T^i (\Delta R_i < 1.0)}$$

B $\rightarrow \mu\mu$ **Optimisation (D0)**

Similar three primary discriminating variables

0.2

0.4

0.6

0.8

Isolation

- D0 use 2d lifetime variables instead of 3d
 - Optimise using MC for signal, data sidebands for background
- Random grid search, optimising for 95% C.L.

Likelihood Ratio Discriminant (CDF)

- First iteration of analysis used standard cuts optimisation
- Second iteration uses the more powerful likelihood discriminant

$$L = \frac{\prod_{i} P_{sig}(x_i)}{\prod_{i} P_{sig}(x_i) + \prod_{i} P_{bkg}(x_i)}$$

- i: index over all discriminating variables
- P_{sig/bkg}(x_i): probability for event to be signal / background for a given measured x_i
- Obtain probably density functions of variables using
 - background: Data sidebands
 - signal: Pythia Monte Carlo sample

Optimisation (CDF)

Likelihood ratio discriminant:

Optimise likelihood and p_t(B) for best 90% C.L. limit

- Bayesian approach
- consider statistical and systematic errors
- Assume 1fb⁻¹ integrated luminosity

Expected Background (CDF/D0)

- Extrapolate from data sidebands to obtain expected events
- CDF:
 - Scale by the expected rejection from the likelihood ratio cut
 - Expected background: 0.81 ± 0.12 (central-central dimuon) 0.66 ± 0.13 (central-extended dimuon)
 - Tested background prediction in several control regions and find good agreement
- D0:
 - Expected background: 4.3 ± 1.2

Unblinded Results (D0)

- Apply optimised cuts
- Unblinded results for $B_s \rightarrow \mu \mu$:

- Expected background:4.3±1.2
- Observed: 4

BR(B_s→μμ) < 3.0×10⁻⁷ @ 90% CL < 3.7×10⁻⁷ @ 95% CL

Unblinded Results (CDF)

Results with p_t(B)>4GeV cut applied, Likelihood cut at 0.99:

No events found in B_s or B_d search windows in either muon pair type

Limits on BR(B_{d,s} $\rightarrow \mu\mu$) (CDF)

BR(B_s→μμ) < 1.6×10⁻⁷ @ 90% CL < 2.1×10⁻⁷ @ 95% CL

BR(B_d→μμ) < 3.9×10⁻⁸ @ 90% CL < 5.1×10⁻⁸ @ 95% CL

These are currently world best limits

The future for CDF:

- use optimisation for 1fb⁻¹
- need to reoptimise at 1fb-1 for best results
- assume linear background scaling

$B_{d,s}^{0} \rightarrow \mu\mu K^{+}/K^{*}/\phi$

$B_{d,s} \rightarrow \mu \mu K^{+}/K^{*}/\phi$

- B Rare Decays
 - $B^+ \rightarrow \mu \mu K^+$
 - $B^0 \rightarrow \mu \mu K^*$
 - $B_s \rightarrow \mu \mu \phi$
 - $\Lambda_b \rightarrow \mu \mu \Lambda$

observed at Babar, Belle

hep-ex/0109026, hep-ex/0308042, hep-ex/0503044

- FCNC $b \rightarrow s\gamma^*$
- Penguin or box processes in the Standard Model:

• Rare processes: Latest Belle measurement $\mathcal{B}(B \to K\ell^+\ell^-) = (5.50^{+0.75}_{-0.70} \pm 0.27 \pm 0.02) \times 10^{-7}$

Motivations

- 1) Would be first observations in B_s and Λ_b channels
- 2) Tests of Standard Model
 - branching ratios
 - kinematic distributions (with enough statistics)
- Effective field theory for $b \rightarrow s$ (Operator Product Expansion)

$$\mathcal{H}_{\text{eff}} = -4 \frac{G_F}{\sqrt{2}} V_{ts}^* V_{tb} \sum_{i=1}^{10} C_i(\mu) O_i(\mu)$$

- Rare decay channels are sensitive to Wilson coefficients which are calculable for many models (several new physics scenarios e.g. SUSY, technicolor)
- Decay amplitude: C₉
- Dilepton mass distribution: C₇, C₉
- Forward-backward asymmetry: C₁₀

Analysis Outline (CDF,D0)

- Use $B \rightarrow J/\psi X$ channels as control channels
 - exactly the same signature (J/ $\psi \rightarrow \mu\mu$)
 - use MC to obtain relative efficiency

- Most likely confirm observation $B^+ \rightarrow \mu\mu K^+$ and measure BR
- Then either
 - make first observations in B_s and Λ_b or
 - set strong branching ratio limits

Sensitivity Analysis (D0)

• Cuts analysis using same variables as $B_s \rightarrow \mu\mu$ analysis

- Remove the dimuon mass regions corresponding to $J/\psi, \psi', \phi$
- Contribution from rare decays not well understood under resonances

Sensitivity Analysis (D0)

- Box is unopened
- Expected background: 5.1 ± 1.0 events
- Sensitivity for 90% C.L. limit calculated: BR(B_s $\rightarrow \mu\mu \phi$)<1.2 x10⁻⁵

Summary

- $B_{d,s} \rightarrow \mu^+ \mu^-$ are a powerful probe of new physics
 - Could give first hint of new physics at the Tevatron
 - World best limits coming from Tevatron experiments
 - Combinations of D0 and CDF results by Lepton Photon 05

- $B_{d,s} \rightarrow \mu^+ \mu^- K/K^*/\phi$ should be observable in Run II
 - Also a test of the Standard Model
 - Sensitivity analysis performed, awaiting results

Backup

Samples (CDF)

- Additional cuts in some triggers:
 - Σ**p_t(μ)>5 GeV**
 - L_{xy}>100µm
 - mass(μ μ)<6 GeV
 - mass(μ μ)>2.7 GeV

0

Background estimate (CDF)

	LH	CMU-CMU		CMU-CMX	
	cut	pred obsv		pred obsv	
OS-	>0.50	236+/-4	235	172+/-3	168
	>0.90	37+/-1	32	33+/-1	36
	>0.99	2.8+/-0.2	2	3.6+/-0.2	3
SS+	>0.50	2.3+/-0.2	0	2.8+/-0.3	3
	>0.90	0.25+/-0.03	0	0.44+/-0.04	0
	>0.99	<0.10	0	<0.10	0
SS-	>0.50	2.7+/-0.2	1	3.7+/-0.3	4
	>0.90	0.35+/-0.03	0	0.63+/-0.06	0
	>0.99	<0.10	0	<0.10	0
FM+	>0.50	84+/-2	84	21+/-1	19
	>0.90	14.2+/-0.4	10	3.9+/-0.2	3
	>0.99	1.0+/-0.1	2	0.41+/-0.03	0

- 1.) OS-: opposite-charge dimuon, $\lambda < 0$
- 2.) SS+: same-charge dimuon, $\lambda > 0$
- 3.) SS- : same-charge dimuon, $\lambda < 0$
- 4.) FM : fake muon sample (at least one leg failed muon stub chi2 cut)

28

Likelihood p.d.f.s (CDF)

Input p.d.f.s:

Likelihood ratio discriminant:

...

Methodology (CDF)

- Search for muon pairs in B_d/B_s mass windows
- D0 search for only Bs and correct for Bd decays
- Approximately 360pb⁻¹ integrated luminosity
- Blind analysis
- Aim to measure BR or set limit

$$BR(B_{s} \to \mu^{+}\mu^{-}) = \frac{N_{Bs}}{N_{B+}} \frac{\alpha_{B+} \cdot \varepsilon_{B+}^{total}}{\alpha_{Bs} \cdot \varepsilon_{Bs}^{total}} \frac{f_{u}}{f_{s}} BR(B^{+} \to J/\psi K^{+}) BR(J/\psi \to \mu^{+}\mu^{-})$$

- Reconstruct normalization mode ($B^+ \rightarrow J/\psi K^+$)
- Construct discriminant to select B signal and suppress dimuon background
- Measure background
- Measure the acceptance and efficiency ratios

Signal and Side-band Regions

MC Samples

Pythia MC

- Tune A
- default cdfSim tcl
- realistic silicon and beamline
- pT(B) from Mary Bishai
- pT(b)>3 GeV && |y(b)|<1.5
 - Bs $\rightarrow \mu + \mu -$ (signal efficiencies)
 - B+ \rightarrow JK+ \rightarrow µ+µ-K+ (nrmlztn efncy and xchks)
 - B+ \rightarrow J π + \rightarrow µ+µ- π + (nrmlztn correction)

SO(10) Unification Model

- tan(β)~50 constrained by unification of Yukawa coupling
- All previously allowed regions (white) are excluded by this new measurement
- Unification valid for small $M_{1/2}$ (~500GeV)
- New Br(Bs→µµ) limit strongly disfavors this solution for m_A= 500 GeV

Red regions are excluded by either theory or experiments Green region is the WMAP preferred region Blue dashed line is the Br(Bs \rightarrow µµ) contour Light blue region excluded by old Bs \rightarrow µµ analysis Excluded by this new result

Method: Likelihood Variable Choice

Method: Checking MC Modeling of Signal LH

For CMU-CMX:

- MC reproduces Data efficiency vs LHood cut to 5% or better
- Assign 5% (relative) systematic for CMU-CMX

Step 4: Compute Acceptance and Efficiencies

$$\left(\frac{\alpha_{B+}}{\alpha_{Bs}}\right) \cdot \left(\frac{\varepsilon_{B+}^{trig}}{\varepsilon_{Bs}^{trig}}\right) \cdot \left(\frac{\varepsilon_{B+}^{reco-\mu\mu}}{\varepsilon_{Bs}^{reco-\mu\mu}}\right) \cdot \left(\frac{\varepsilon_{B+}^{vtx}}{\varepsilon_{Bs}^{vtx}}\right) \cdot \varepsilon_{B+}^{reco-K} \cdot \frac{1}{\varepsilon_{Bs}^{LH}}$$

- Most efficiencies are determined directly from data using inclusive $J/\psi \rightarrow \mu\mu$ events. The rest are taken from Pythia MC.
- α (B+/Bs) = 0.297 +/- 0.008 (CMU-CMU) = 0.191 +/- 0.006 (CMU-CMX)
- ε^{LH}(Bs): ranges from 70% for LH>0.9 to 40% for LH>0.99

Red = From MC

Green = From Data

- $\epsilon^{\text{trig}}(B+/Bs) = 0.9997 + 0.0016 \text{ (CMU-CMU)}$ = 0.9986 + - 0.0014 (CMU-CMX)
- $\epsilon^{\text{reco-}\mu\mu}(B+/Bs) = 1.00 +/- 0.03 (CMU-CMU/X)$
- $\varepsilon^{vtx}(B+/Bs) = 0.986 +/- 0.013 (CMU-CMU/X)$
- $\varepsilon^{\text{reco-K}}(B+) = 0.938 + 0.016 (CMU-CMU/X)$

Blue = combination of MC and Data