B⁰ mixing at CDF

Marco Rescigno – **INFN/Roma**

Event 1191211 Muon Pt = 31 GeV Missing Et = 69 GeV Number of Jets = 4

Bs Mixing predictions Tevatron & CDF CDF analysis Collecting B(s) **Flavour** Tagging Measuring ∆m_d <u>∆ms limit</u> **Tevatron Sensitivity** extrapolation Phi = 291, L2d = 2 mm

B⁰ Flavour Oscillations

Flavour oscillations occur through 2nd order weak interactions

$$\Delta m_{q} = \frac{G_{F}^{2} m_{W}^{2} \eta S(m_{t}^{2} / m_{W}^{2})}{6\pi^{2}} m_{Bq} f_{Bq}^{2} B_{Bq} \left| V_{tq}^{*} V_{tb} \right|^{2}$$

 Δm_d (exp.)= 0.510<u>+</u>0.005 ps⁻¹ (HFAG 2005)

Lattice-QCD:

 $f_{Bd}^{2}B_{Bd} = (223 \pm 33 \pm 12) \text{ MeV}$ $f_{Bs}^{2}B_{Bs} = (276 \pm 38) \text{ MeV}$

 \rightarrow |V_{td}| determined at ~15% But in the ratio uncertainties cancels:

$$\frac{\Delta m_{s}}{\Delta m_{d}} = \frac{m_{Bs}}{m_{Bd}} \frac{f_{Bs}^{2} B_{Bs}}{f_{Bd}^{2} B_{Bd}} \frac{|V_{ts}|^{2}}{|V_{td}|^{2}} = \frac{m_{Bs}}{m_{Bd}} \xi^{2} \frac{|V_{ts}|^{2}}{|V_{td}|^{2}}$$

M.Rescigno - Beauty 2005, June 20th 2005

with $\sim 5\%$ theory error

ξ = 1.24<u>+</u>0.04<u>+</u>0.06

Unitarity Triangle & Δm_s

- Brown Band: Δm_d measurement: ~15% uncertainty
- Dashed circle: lower limit on $\Delta m_s / \Delta m_d \rightarrow Upper Limit on |V_{td}|$
 - The lower bound on Δm_s already gives a constraint to Unitarity Triangle
- http://utfit.roma1.infn.it

<u>CKMfitter's</u> <u>version</u>

M.Rescigno - Beauty 2005, June 20th 2005

CKM fit

Input from [Vub/Vcb], Δm_d , ϵ_K , sin2β, cos2β, α and γ: $\Delta m_s = 20.4 \pm 2.8 \text{ ps}^{-1}$ [15.1, 26.3] @ 95% CL include also Δm_s limit: $\Delta m_s = 18.9 \pm 1.7 \text{ ps}^{-1}$ [15.7, 23.0] @ 95% CL

A very narrow shooting range for collider experiments!

New Physics @ 3σ for $\Delta m_s > 31$ ps⁻¹

b-s sector much less constrained (yet) than b-d Large New Physics contribution to B_s mixing and its phase still possible!

Outline/RoadMap to Δm_s

Recall: expression for significance in a mixing measurement

4) Improve σ_t :

- •fully reconstructed !
- L00 close to beam pipe

•Primary vertex resolution. M.Rescigno - Beauty 2005, June 20th 2005

Know your mistag rate from a Δm_d measure

Need statistic!

Amplitude

scan

 $S \varepsilon D^2$

1) Trigger design to maximise Signal (S) \rightarrow highest BandWidth

S

S + B

Fight for your Band Width (if in a general-purpose exp.)

Keep your trigger alive!

 $(\Delta m_s \sigma_t)^2$

2

2) Good momentum (mass) and energy (!) resol. for max S/(S+B)

3) Measure $\tau_{\rm R}$ on semileptonic & hadronic on multiple triggers

(with/without lifetime bias)

Significance =

Collecting data

Luminosity Delivered/Recorded

(100 pb⁻¹ lost due to drift chamber ageing problem, now solved) M.Rescigno - Beauty 2005, June 20th 2005

INFN Istituto Nazionale di Fisica Nucleare

Silicon Vertex Tracker

- Triggering on displaced vertex at CDF using SVT main novelty in Run II, workhorse for CDF B-physics program. See at this conference:
 - Charmless decays (Donati)
 - SVT trigger (Dell'Orso)
- CDF way to get fully reconstructed decays useful for mixing (and other good stuff...)

Rescigno - Beauty 2005, June 20th 2005

Main Trigger requires:

- > 2 opposite charge tracks,
- $P_t \ge 2 \text{ GeV/c},$
- > impact parameter $|d_0| > 120 \,\mu m$
- Scalar pt sum > 5.5 GeV/c
- > Projected decay length $L_{xy} > 200 \,\mu m$

 $\geq 2^{\circ} < \Delta \phi < 90^{\circ}$

Add a dynamically prescaled LOWPT trigger with no opposite charge and no Pt sum to fill available bandwidth at low luminosity

Two different B_s signatures:

Fully reconstructed HADRONIC modes:

Complete momentum reconstruction
Good proper time resolution
High Bs mass resolution → high S/B
Selected by <u>Two Track Trigger</u> (SVT)

Two displaced tracks (w large SVT Impact parameter)

LOW statistics (useful BR)
Demanding on L1 B/W: >30 KHz @ 1E32cm⁻²s⁻¹ F⁻¹

 $B_s^0 \rightarrow D_s^- l^+ \nu_l X$

μ,e

 $\rightarrow D_{c}^{-}\pi^{+}$

 B_{a}^{0}

Partially reconstructed SEMILEPTONIC modes:

Missing momentum carried by the V
Visible proper time corrected from MC (K factor)
Proper time resolution diluted by missing momentum
Cannot reconstruct Bs mass → different S/B
Selected by <u>dedicated trigger</u> (I+SVT):

One displaced tracks (w large SVT Impact parameter)
One Lepton μ,e (p_T >4 GeV/c)

HIGH statistics and well behaved trigger P.V

Hadronic B_s signals

Semileptonic B_s Signals

Other signals

$$B_s^0 \rightarrow D_s^- l^+ \nu X (D_s^- \rightarrow \phi \pi^-)$$

355 pb⁻¹ **CDF Run II Preliminary** MeV/c² •Missing $P_T \longrightarrow No B_s$ mass peak 1600 $B_s^0 \rightarrow l^+ \nu D_s^- (D_s^- \rightarrow \phi \pi^-)$ • I⁺ D_s⁻ 1400 $-\Gamma D_s$ •Use D_s mass signals $N(ID_s) = 4355 \pm 94$ 1200 per •Charge correlation between ℓ and D_s 1000 $D_{\rm c}^{\pm} \rightarrow \phi \pi^{\pm}$ $-\ell^+ D_s^-$: "Right-sign" = signal Entries 800 $-\ell D_s^-$: "Wrong-sign" = background 600 $\phi \pi^{\pm}$ Right-sign peak is not pure signal 400 – <u>~20% background:</u> » D_s + fake lepton from primary 200 » $B^0, B^+ \rightarrow D_s D X$ with $D \rightarrow \ell v X$ » **c-c** backgrounds 1.85 1.90 1.95 2.00mass(KK π) (GeV/c²)

Signal Yields Summary

	(S/B)	
$B_s → D_s π$; $D_s → φπ$	526±33 (1.8)	
<mark>B_s→D_sπ</mark> ; D _s →K*K	254±21 (1.7)	Hadronic B _s modes
$B_s → D_s π$; $D_s → πππ$	116±18 (1.0)	
$B^+ \rightarrow D^0 \pi^+$; $D^0 \rightarrow K \pi$	~6200	
$B^0 \rightarrow D^{*+}\pi^-; D^{*+} \rightarrow D^0\pi^+$	~2800	← O(10 ⁴) B ⁰ /B ⁺ calibration modes
$B^0 \rightarrow D^+ \pi^-$; $D^+ \rightarrow K \pi \pi$	~5600	

(S/B)

Measuring ct

Decay Time Bias

Extract proper time at decay from B flight distance in the transverse plane:

 $ct = \frac{L}{\beta \gamma} = L_{xy} \times \frac{m(B)}{p_T(B)}$

Two complications:

- 1. Trigger bias on L_x
- 2. Correct for missing v in semileptonic
- Trigger and reconstruction requirements affect L_{xy}
 - Trigger (impact parameter) cuts at low ct
 - SVT acceptance at high ct
- "ct" efficiency from Monte-Carlo:
 - B production/decay model
 - detailed Trigger/Detector simulation
- Test with high-statistic B⁰/B⁺ samples

B^0 and B^+ hadronic modes $c\tau$

\pm (stat) \pm (syst)

stituto Nazionale di Fisica Nuclear

Systematic summary [%]

$\tau(B^+) = 1.661 \pm 0.027 \pm 0.013$ nc						
$(D) = 1.001 \pm 0.027 \pm 0.013 \text{ ps}$				Effect	Variation (μm)	Variation (μm)
$\tau(\mathbf{P}^0) = 1.511 \pm 0.023 \pm 0.013$ pg				B^0	B_s	
$\pi(D^{\circ}) = 1.511 \pm 0.025 \pm 0.015 \text{ ps}$			MC input $c\tau$	negligible	negligible	
$\sigma(\mathbf{D}) = 1.508 \pm 0.007 \pm 0.017 \text{ mg}$			p_T reweight	1.9	1.9	
$\chi(D_s) = 1.598 \pm 0.097 \pm 0.017 \text{ ps}$			Scale Factor	negligible	negligible	
HFAG 04 average			Bkg ct description	1.1	1.1	
			Bkg fraction	2.0	2.0	
		SV/T	S\/T hias	I.P. correlation	1.0	1.0
	$\tau(B^+) = 1.653 \pm 0.014 \text{ ps}$			Eff. parameterization	1.5	1.5
	(D0) = 1 = 724 + 0.012	syst.	small	L_{xy} significance	negligible	2
	$\tau(B^{\circ}) = 1.534 \pm 0.013 \text{ ps}$	13 ps		$\Delta\Gamma_s$	-	1.0
	$\tau(B) = 1.460 \pm 0.050$ ng			Alignm. + others	2.4	2.4
	$t(D_s) = 1.407 \pm 0.057 \text{ ps}$			Total	4.2	4.7
Reso	igno - Beauty 2005 June 20th 2005		•			

Semileptonic B_s Modes Lifetime tituto Nazionale

0.8

Combined *L*-D_s lifetime result: 1.477±0.032 ps stat. err .only (analysis ongoing) HFAG '05 flavour specific: 1.472 ± 0.045 ps (DØ '05 D_sl: 1.420±0.043±0.057 ps)

Effect of proper time resolution

M.Rescigno - Beauty 2005, June 20th 2005

B_s decay time resolution

- <σ_{ct}⁰>: ~ 30 μm (100 fs) - σp/p < 1%

<u>Semileptonic</u> $- < \sigma_{ct}^{0}>: ~ 50 \mu m$ (167 fs) $- \sigma p/p ~ 15\%$ (K factor due to missing neutrino)

M.Rescigno - Beauty 2005, June 20th 2005

Huge prompt (90%) D_s + track sample to correct σ_{ct} error calculation and parameterize as a function of several variables.

Flavour Tagging

Flavor Tagging

•Same side tagging

- Use fragmentation track
- $-B^{0}$, B⁺, and B_s are different
- Kaon around B_s: PID is important (more at the end of the talk)

•Opposite side tagging (5 algo)

- Use the other B in the event
- Semileptonic decay (b \rightarrow l⁻)
 - (1) Muon, (2) Electron
- Use jet charge (Q_b = -1/3)
 - (3) Jet has 2ndary vertex
 - (4) Jet contains displaced track
 - (5) Highest momentum Jet

Used only Opposite Side Tags so far for B_s

Calibration Sample for Taggers

•Need high stat. sample to develop and calibrate tagging algorithm:

•High purity reached after lepton+track mass cut applied

•Statistical Power of a tag: εD²

- Tagging efficiency (ε)
- Tagging dilution (D = 1-2w)
 - w = mistag rate

•Parameterize dilution as a function of relevant variables and wheight events with their event-by-event dilution

-Dividing events into different classes based on tagging power improves combined ϵD^2

•Calibration of the tagger performance requires high statistics!

•Use inclusive semileptonic decays from the lepton+track trigger (>10⁶ events)

-Lepton charge gives "true" B flavour

-Tag the other b

Flavor tagging – Soft Leptons

Run II

tituto Nazionale i Fisica Nucleare

Likelihood based electron and muon ID

Using combination of calorimeter,muon detector,dE/dx info

Similar performance as in Run I (cD²=0.9±0.1 %)

 $D_{max} \sim 0.4 \rightarrow 30\%$ mistag rate

Flavor tagging – Jet Charge

Run II

Cone based jet algorithm: compute Jet Charge of

- Secondary Vertex tagged jets
- Jet Probability tagged jet
- •Highest P jet

Similar performance as in Run I ($\varepsilon D^2=0.8\pm0.1$ %)

 $D_{max} \sim 0.4 \rightarrow 30\%$ mistag rate

Tag type	εD² (%)
Muon	(0.70±0.04)%
Electron	(0.37±0.03)%
2ndary vtx	(0.36±0.02)%
Displaced track	(0.36±0.03)%
Highest p jet	(0.15±0.01)%
Total (exclusive)	~1.6%

B⁰ mixing and dilution scaling

• Validation of the flavor tag calibration using B⁰ and B⁺ sample $-B^0 \rightarrow D\pi, B^+ \rightarrow D^0\pi$ $-B^0 \rightarrow J/\psi K^{*0}, B^+ \rightarrow J/\psi K$

tituto Nazional

$$B^{0}: e^{-t/\tau} \left(1 \pm S \cdot D \cdot \cos(\Delta m_{d} t) \right)$$
$$B^{+}: e^{-t/\tau} \left(1 \pm S \cdot D \right)$$

Fit the "<u>Dilution scale factor</u>" S

=1 if the tag calibration is correct.
5 scale factors for 5 tag types

Effective Dilution depend on detail of the samples (e.g. P_t spectra)

 → Scale factors are then used for <u>B_s mixing</u> analysis for hadronic channels
 → Same thing for semileptonic decays

B⁰ mixing results

	HADRONIC	SEMILEPTONIC
∆m _d	(0.503±0.063±0.015) ps ⁻¹	(0.498±0.028±0.015) ps ⁻¹
Total εD ²	(1.12±0.23)%	(1.43±0.09)%
Muon	0.83±0.10±0.03	0.93±0.04±0.03
Electron	0.79±0.14±0.04	0.98±0.06±0.03
Vertex	0.78±0.19±0.05	0.97±0.06±0.04
Track	0.76±0.21±0.03	0.90±0.08±0.05
Jets	1.35±0.26±0.02	1.08±0.09±0.09

- Δm_d consistent with WA: 0.510±0.005 ps⁻¹
- Total εD²: 1.1—1.4%
- All dilution scale factors consistent with 1
- Hadronic: 15~25% uncertainty
- Semileptonic: 5~15% uncertainty

Dilution scale factor

Amplitude Scan for B⁰_{d(s)}

•Introduce "Amplitude" in Likelihood

$$L_{sig}^{t} = \frac{1}{\tau} e^{-t/\tau} \left(1 \pm A \cdot D \cdot \cos(\Delta m \cdot t) \right)$$

HFAG 04 •<u>95% CL limit is</u> : Δm_s > 14.5 ps⁻¹

<u>Sensitivity:</u>

18.2 ps⁻¹

– Fit the amplitude for fixed Δm

- Amplitude: A, uncertainty: σ_A
- Repeat the fit for different Δm

•Amplitude will be consistent with:

- 1 if mixing detected at the frequency Δm
- 0 if there is no mixing
- Example for B⁰ Hadronic sample
 - Amplitude = 1 at $\Delta m = 0.5 \text{ ps}^{-1}$
 - Amplitude = 0 at $\Delta m >> 0.5 \text{ ps}^{-1}$

Amplitude Scan result

Hadronic has no sensitivity (yet) but is better behaved at high ∆ms

Systematic errors **are negligible with respect to statistical in both cases**

<u>details</u>

CDF/World Comparison

CDF2 B (hadronic) 9th best @ $\Delta m_s = 10ps^{-1} \rightarrow 5^{th}$ best @ $\Delta m_s = 19ps^{-1}$ [180% \rightarrow 60 % worse sensitivity than best experiment] CDF2 DI (semil.) 7th best @ $\Delta m_s = 10ps^{-1} \rightarrow 8^{th}$ best @ $\Delta m_s = 19ps^{-1}$ [130% \rightarrow 95 % worse sensitivity than best experiment]

Future perspectives

Future perspectives

•Add more channels

•B_s→D_s3π (130 events +20%)
•B_s→D_s*π
•Add semileptonic B_s decays from the hadronic trigger (S. De Cecco talk)
X2 semileptonic statistic

Improve decay time resolution with PV event by event (<u>detail</u>)
Incremental changes in existing algorithm (new Jet Charge +20% εD²)
Add new tagging algorithm Same Side Kaon Tag

• New data rolling in, but increasingly peak luminosity:

- Keep alive as much as possible present triggers \rightarrow SVT upgrade
- Use new trigger strategies

•2 SVT Tracks + opposite side muon (pt>1.5 GeV) at trigger level (already in place since summer 2004 can survive at higher luminosity)

Same side Kaon tagging

Exploits the charge correlation between the b quark flavour and the leading product of b hadronization.

Already used in Δm_d measurement, gives an $\epsilon D^2 = 1.1 \pm 0.4$ %

 $\mathsf{B^+}$ case is complicated by the contribution of excited $\mathsf{B_d}$ and $\mathsf{B_s}$ states

SS Kaon tag possible with PID **Issues**:

• Unlike opposite side tagger cannot calibrate using B⁰ and B⁺

•Need to know εD^2 from MC to set a limit on Δm_s

•MC tuning crucial

MC-data comparison with PID

<u>Apply PID</u>, T.O.F. and dE/dx combined In a Likelihood ratio $L(K)/L(\pi)$

Encouraging agreement! *Issues:*

- •Particle fractions in MC
- •PID resolution tuning
- •Backgrounds

•*MC* predict εD^2 can be 2-3%

B_smixing sensitivity projection

- Analytic extrapolation, reproduce present result with current inputs
- Prediction include a reduced (50%) effective luminosity usable for B-physics from 2007 onwards
- Sensitivity to the favorite CKM range
- In case of no signal 95% C.L. up to 30 ps⁻¹ with 4 fb⁻¹
- CKM fit will imply New Physics if $\Delta m_s > 28 \text{ ps}^{-1}$ by then...

More projections

M.Rescigno - Beauty 2005, June 20th 2005

tituto Nazionale

Summary

- First attempt at this (very) complex analysis!
- Expect close to 1fb⁻¹ good data on tape by fall shutdown:
 - x3 statistics w.r.t to present result ?
 - Additional channels can be used both for fully reconstructed and semileptonic
 - Incremental improvements to existing opposite tagging algorithm expected
 - Building confidence on Same Side Kaon tagging
 - Better reconstruction of primary/secondary vertex improve proper time resolution
- Improved limit (15 ps⁻¹ sensitivity?) expected by winter 06!
- Extensive upgrade to DAQ/trigger will keep B-triggers alive with increasing luminosity and allow the exploration of the SM favourite range for Δm_s by the end of RunII

The Upgraded CDF Detector

AD Projections (design plan)

CDF trigger architecture

Crossing: 396 ns: 2.5 MHz

- Level 1: hardware
 - Calorimeter, Muon, Track
 - 25kHz (reduction ~x100)
- Level 2: hardware + CPU
 - Cal cluster, Silicon track
 - 400 Hz (reduction ~x60)
- Level 3: Linux PC farm
 ~ Offline quantities
 90 Hz (reduction ~ x5)

Basic tools: PID

Improved TOF calibration (better resolution)
+ t0 (reduced tails)

TOF: >1 σ K/ π separation up to p=2 GeV

•Improved COT dE/dx calibration over wider βγ range

dE/dx in COT K/π sep. >1.4σ@Pt>2GeV

Combine TOF+COT in a likelihood ratio usable for all momentum range!

- Yellow Band: Δm_d measurement: ~15% uncertainty
- Orange Band: Lower limit on $\Delta m_s = Upper Limit on |V_{td}|$
- The lower limit on Δm_s already gives a constraint to the Triangle
- CKM Fit result: Δm_s : 17.8^{+6.7}_{-1.6} (1 σ) : ^{+15.2}_{-2.7} (95%CL)

CDF "B_s Mixing Group"

 ~70 physicists (22 italians, 9 phd/post-doc) in CDF are actively involved in the B_s mixing project

- Improving the trigger strategy
- Understanding the detector
- B Lifetime Measurements
- Flavor Tagging
- B⁰ Mixing
- $-B_{s}$ Mixing
- Big collaborative effort:
 - -Analyse 3 different datasets
 - -Reconstruct 0(20) different decay modes
 - –Perform 2 parallel analysis for both hadronic and semileptonic modes
 - -Study 4 different tagging algorithms
 - -TOF and dE/dx calibrations

CDF/ANAL/BOTTOM/CDFR/7531 Version 1.0 March 9, 2005

Result of Unblinded Δm_s Amplitude Scan Using Semileptonic $B_s^0 \rightarrow D_s^- \ell^+ \nu$ Decays

B_s^0 Mixing Group

Farrukh Azfar ¹⁹, Gary Barker ⁸, Gerry Bauer ¹³, Franco Bedeschi ¹¹, Satyajit Behari ¹⁵, Stefano Belforte ¹², Alberto Belloni ¹³, Eli Ben-Haim ⁷, Arkadiy Bolshov ¹³, Joe Boudreau ²², Massimo Casarsa ¹², Pierluigi Catastini ¹¹, Alessandro Cerri ⁵, Agnese Ciocci ¹¹, David Clark ², Saverio D'Auria ⁶, Saverio Da Ronco ²⁰, Sandro De Cecco ¹⁰, Amanda Deisher ⁵, Francesco Delli Paoli ²⁰, Simone Donati ¹¹, Mauro Donega ¹⁶, Sinéad Farrington ¹⁸, Armando Fella ¹¹, Ivan Furić ⁴, Stefano Giagu ¹⁰, Karen Gibson ³, Kim Giolo ¹⁴, Gavril Giurgiu ³, Guillelmo Gomez-Ceballos ⁹, Robert Harr ²⁴, Matt Herndon ¹⁵, Todd Huffman ¹⁹, Boris Iyutin ¹³, Matthew Jones ¹⁴, Iya Kravchenko ¹³, Joe Kroll ²¹, Tom LeCompte ¹, Claudia Lecci ⁸, Nuno Leonardo ¹³, Donatella Lucchesi ²⁰, Petar Maksimović ¹⁵, Stephanie Menzemer ¹³, Jeffrey Miles ¹³, Christoph Paus ¹³, Jónatan Piedra ⁹, Kevin Pitts ¹⁷, Giovanni Punzi ¹¹, Jonas Rademacker ¹⁹, Azizur Rahaman ²², Marco Rescigno ¹⁰, Alberto Ruiz ⁹, Giuseppe Salamanna ¹⁰, Fabrizio Scuri ¹¹, Marjorie Shapiro ⁵, Paola Squillacioti ¹¹, Masa Tanaka ¹, Vivek Tiwari ³, Fumi Ukegawa ²³, Satoru Uozumi ²³, Denys Usynin ²¹, Ivan Vila ⁹, Barry Wicklund ¹, Chun Yan ²⁵

Institutions:

- (1) Argonne National Laboratory, Argonne, Illinois 60439
- (2) Brandeis University, Waltham, Massachusetts 02254
- (3) Carnegie Mellon University, Pittsburgh, PA 15213
- (4) Enrico Fermi Institute, University of Chicago, Chicago, Illinois 60637
- (5) Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, California 94720
- (6) Glasgow University, Glasgow G12 8QQ, United Kingdom
- (7) IN2P3, Paris, France
- (8) Institut für Experimentelle Kernphysik, Universität Karlsruhe, 76128 Karlsruhe, Germany
 (9) Instituto de Fisica de Cantabria, CSIC-University of Cantabria, 39005 Santander, Spain
 (10) Istituto Nazionale di Fisica Nucleare, Sezione di Roma 1,University di Roma "La Sapienza,"
 I-00185 Roma, Italy

(11) Istituto Nazionale di Fisica Nucleare, University and Scuola Normale Superiore of Pisa, I-56100 Pisa, University of Siena, I-53100 Siena, Italy

Hadronic B_s CDF vs Aleph

~30 events

~500 events

Hadronic B_s signals (2)

back

$$B_s^0 \to D_s^- l^+ \nu(D_s^- \to K^{*0} K^-)$$

ituto Nazional

$$B_s^0 \to D_s^- l^+ \nu(D_s^- \to \pi^- \pi^+ \pi^-)$$

1573±88 events

1750±83 events

B_s lifetime checks hadronic sample

- Raw lifetimes from mixing fit not good for averaging
 - Average: $\tau_B = 1.515 \pm 0.070 \text{ ps}$ no systematics evaluated
 - D0: $\tau(Bs) = 1.420 \pm 0.043 \pm 0.057$ ps, WA: $\tau(Bs) = 1.469 \pm 0.059$ ps

Systematic Uncertainties

•Physics background at low Δm_s •Prompt background at high Δm_s

•Dilution scale factors and templates systematic limited from control sample statistics

**Systematic errors are negligible with respect to statistical in both cases **

Systematics Summary Table

(Hadronic)

source	selected Δm_s scan points				
	0.0	5.0	10.0	15.0	20.0
$B_s \to D_s K$ level	0.019	0.024	0.030	0.037	0.047
dilution scale factors	0.143	0.168	0.205	0.254	0.314
dilution templates	0.119	0.147	0.178	0.211	0.246
fraction of Λ_b	0.014	0.009	0.009	0.011	0.012
Punzi term for σ_{ct}	0.009	0.008	0.022	0.033	0.030
dilution of $B \to DX$	0.025	0.001	0.000	0.000	0.001
σ_{ct} scale factor	0.000	0.024	0.061	0.090	0.144
usage of L00 in bias curve	0.001	0.001	0.001	0.001	0.001
Bs lifetime uncertainty	0.001	0.001	0.001	0.001	0.001
reweighted p_t spectrum	0.001	0.001	0.001	0.001	0.001
non-Gaussian tails in ct resol.	0.001	0.027	0.052	0.078	0.104
neglect B^0 in fit	0.039	0.036	0.033	0.031	0.028
effect of $\Delta\Gamma/\Gamma = 0.2$	0.028	0.028	0.028	0.028	0.028
Total systematic	0.195	0.232	0.289	0.357	0.443
Statistical	0.393	1.129	1.010	2.652	5.281

Systematics Summary Table

(Somilontonic)

Source	S	selectex Δm_s scan points				
	0.0	5.0	10.0	5.0	20.0	
Prompt background fraction	0.044	0.065	0.102	0.145	0.143	
Prompt background dilution	0.014	0.040	0.027	0.062	0.157	
Prompt background shape	0.015	0.010	0.019	0.054	0.057	
Physics background fraction	0.134	0.078	0.093	0.096	0.103	
Sample composition	0.002	0.015	0.022	0.021	0.039	
Dilution scale factors	0.061	0.071	0.068	0.070	0.069	
σ_{ct^*} scale factor	0.002	0.012	0.033	0.047	0.065	
SVT bias curve	0.002	0.001	0.005	0.005	0.012	
Primary vertex	0.007	0.003	0.003	0.005	0.007	
B_s lifetime	0.001	0.011	0.014	0.020	0.026	
non-Gaussian tails in ct resol.	0.005	0.047	0.049	0.052	0.078	
effect of $\Delta\Gamma/\Gamma=0.2$	0.012	0.005	0.005	0.005	0.009	
Total Systematics	0.156	0.142	0.167	0.220	0.273	
Statistical	0.159	0.406	0.856	1.654	3.364	

Dilution scale factor error

Error Source	$S_{\mathcal{D}}^{SMT}$ (%)	S_{D}^{SET} (%)	S_{D}^{JVX} (%)	$S_{\mathcal{D}}^{JJP}$ (%)	$S_{\mathcal{D}}^{JPT}$ (%)	$\Delta m_d \ (\mathrm{ps}^{-1})$
σ_{ct}	0.01	0.02	0.01	0.06	0.04	0.0014
SVT efficiency	0.05	0.03	0.09	0.02	0.02	0.0008
SVT d0 resolution	0.26	0.20	0.49	0.22	0.19	0.0011
Combinatorial background	0.12	0.02	0.13	0.17	0.21	0.0019
Fraction of prompt bckg.	1.86	2.00	2.20	1.67	2.65	0.0041
Dilution of prompt bckg	1.30	1.40	2.40	4.00	8.00	0.0090
$c\tau_{B^{0,+}}$ fixed	0.22	0.15	0.19	0.13	0.29	0.0003
Sample composition	1.38	0.96	1.74	1.44	0.97	0.0089
Physics background	0.63	0.63	0.45	0.45	2.06	0.0027
Dilution templates	0.40	0.90	0.40	0.30	0.30	0.0060

TABLE III: Table of systematic uncertainties for the dilution scale factors and Δm_d .

Source	Relative error (%)					
	S_D^{SMT}	S_D^{SET}	S_D^{JVX}	S_D^{JJP}	S_D^{JPT}	Δm_d
Mass Parameterization						
Signal shape for $B^0 \rightarrow D^- \pi^+$						
ratio of widths	-	_	0.1	0.5	_	0.3
fraction of wide Gaussian	-	_	0.3	0.4	_	0.1
Comb. backgr. for $D\pi$ modes	-	_	_	_	_	_
ct Parameterization						
MC lifetime in SVT bias	-	_	_	_	_	_
L00 in SVT bias	0.1	0.4	_	0.7	0.9	_
Impact parameter in SVT bias	0.2	0.2	0.2	0.4	0.5	_
Scale factor on σ_{ct}	-	-	-	-	-	_
Scale factor σ_{ct} for backgr.	-	0.2	0.4	_	0.1	_
Backgrounds						
K^{*0} swap in $B^0 \rightarrow J/\psi K^{*0}$	0.4	_	0.2	_	0.2	0.1
Λ_b in $B^0 \rightarrow D^- \pi^+$	-	0.2	_	0.1	_	_
B_s in $B^0 \rightarrow D^- \pi^+$	-	_	_	_	_	_
Dilution systematics						
binning of templates	3.2	4.3	3.0	0.1	0.1	0.5
statistical smear of templates	2.6	2.9	5.5	3.3	0.7	2.8
backgr. tagging efficiencies	0.3	0.2	0.2	0.8	0.2	_
Λ_b dilution in $B^0 \rightarrow D^- \pi^+$	-	0.4	_	0.2	_	0.1
Total	4.2	5.2	6.3	3.6	1.3	2.9

TABLE III: Summary of all systematic errors.

CDF vs LEP

 $\Delta m_s [ps^{-1}]$

Likelihood Based Electron ID stituto Nazionale di Fisica Nuclear

- In CDF electron ID \bullet uses
 - ~10 parameters
 - Calorimeter, tracking,
- Use likelihood to \bullet imprové separation S + B $B = \prod B$

Same Side tagging B⁰

B⁰ mixing in the semileptonic channels

stituto Nazionale li Fisica Nucleare

Measure ∆m_d
Extract 5 dilution scale factors

→ The dilution scale factors are used for semileptonic $\underline{B_s \text{ mixing}}$ analysis

Other channels, example

$$B_s^0 \to D_s^- \pi^+ \pi^- \pi^+$$

- •133±23 Bs candidates
- •Already used for lifetime
- •But not for mixing
- •20% statistics

No EbE/L00:

 - σ ~ 67 fs

 With EbE/L00:

 - σ ~ 47 fs
 - 30%
 improvement

 Not fully

exploited yet (only L00)

NNet Jet Charge

CDF Run II Monte Carlo

bJetNet

····· IP jet prob

purity

0.8

0.6

Nnet based

Wheight each track by its probability to originate from b

SSKT : MC tuning, no PID

One possible way to solve the issue of having a prediction for the SSKT dilution is to extract it from MC.

 \rightarrow Compare <u>DATA</u> with <u>Pythia</u> b-antib production and hadronization with all the processes on, underlying event "tune A" from HF x-sec. CDF data.

Look at the charged tracks in a cone of $\Delta R=0.7$ around the B_s (no PID)

good agreement !

B_smixing sensitivity projection(II)

Figure 4: Sensitivity projections for 95% C.L. exclusion limit.

Figure 5: Sensitivity projections for 3σ observation.

Calibration B⁰ and B⁺ hadronic signals

ituto Nazional

Semileptonic B⁰ and B⁺ Signals

Lifetime in the semileptonic B_s modes

$c\tau = 413.8 \pm 20.1 \ \mu m$ c

 $c\tau = 422.6 \pm 25.7 \ \mu m$

Combined ℓ -D_s lifetime result: 445.0 ± 9.5 µm(W.A.: 438 ± 17 µm)statistical err .only, \rightarrow NOT for Averages \leftarrow (DØ '05: 426 ± 13 ± 17 µm)

Real D_s backgrounds: prompt and physics

M.Rescigno - Beauty 2005, June 20th 2005

tituto Nazionale

Experimental status on Δm_s

Present limit (HFAG 2004) from: LEP / SLD / CDF run I

Amplitude scan method discussed later

M.Rescigno - Beauty 2005, June 20th 2005

Short term realistic scenario

•Hadronic analysis will begin to lead the sensitivity •Start to "eat" interesting Δm_s range combining the 2 analysis

wiixiiig

Improvomante

- Include Same Side (Kaon) Tagging
 - Expect twice tagging power than OST combined
 - x3 statistical power! ... but systematics limited in setting a limit
- Improve accuracy of primary vertex
 - - 20% on σ (ct) → +40% on εD² @ Δm_s=10 ps⁻¹
- Add more channels +30%
 - Bs→Ds3π
 - Bs→Ds*π, Bs→Dsρ*
- x4 statistical power feasible with same data set → x2 on
 M.Famplitude/errorune 20th 2005

Decay Time Resolution

Decay vertex error matrix overall correction for mis-knowledge of hit resolution

- \rightarrow Apply a scale factor **S** to σ (ct) from vertex fit:
 - Huge control sample: D_s^{\pm} + random track to emulate B_s decay topology
 - Correct for small (10%) secondary D_s[±] in the sample
 - Parameterize S in terms of several variables (P_T, Isolation,...)
 - Correct $\sigma(ct)' = S \cdot \sigma(ct)$ event by event.

M(ID) Binning for K factor

- Resolution of K factor:
 - better for high M(ID)
 - Dividing event in different M(ID)
- Evaluate K factor in each M(ID) bin
 - Improve the decay time resolution

M.Rescigno - Beauty 2005, June 20th 2005

Prompt Background

Clear prompt peak also in the right sign lepton + D+ events

tituto Nazional i Fisica Nuclear

- Event tagged with high dilution tagger (Muon, Electron, Vertex)
 - Prompt background is reduced
 - No opposite side B for prompt BG

Tracking

- Great progress in Si stand-alone
- Substantial efficiency improvement at large η and lowpt
- Improved mass resolution
- L00 now ready for physics:
 - eff. 60% and growing
 - Clear improvement in σ(L_{xy}),crucial for Bs mixing

 Strange peaks in expected Dms being there already before Tevatron new input

Flavor tagging – Soft Leptons

Run II

lstituto Nazionale di Fisica Nucleare

TABLE X. The statistical power ϵD^2 for the flavor tagging methods used: Jet-Charge Single Vertex (JCSV), Jet-Charge Double Vertex (JCDV), and Soft-Lepton Tag (SLT). Results for the e and μ trigger data are shown in separate rows. The sum is over bins of p_T^{rel} for the soft-lepton data and $|Q_{\text{jet}}|$ for the jet-charge data, as shown in Figures 7 and 9, respectively. The square of the dilution normalization factor N_D is used to rescale the $\sum_i \epsilon_i D_{\text{raw } i}^2$ value to give $\sum_i \epsilon_i D_i^2$. The first error is statistical, the second systematic.

Sample	Total ϵ	$\sum_{i} \epsilon_i D_{\text{raw } i}^2$	N_D	$\sum_{i} \epsilon_i D_i^2$
JCSV (e)	$41.55 \pm 0.14 \%$	$0.077 \pm 0.016 ~\%$	$1.88 \pm 0.20 \pm 0.15$	$0.27 \pm 0.06 \pm 0.04 \%$
JCDV (e)	$7.44 \pm 0.08 \%$	$0.159\pm0.023~\%$	$1.76\pm0.13\pm0.09$	$0.49 \pm 0.10 \pm 0.05 ~\%$
SLT (e)	$4.38 \pm \ 0.06 \ \%$	$0.329\pm0.033~\%$	$1.72\pm0.08\pm0.11$	$0.97 \pm 0.13 \pm 0.12$ %
$JCSV(\mu)$	$43.81 \pm 0.14 \ \%$	$0.048\pm0.012~\%$	$2.41 \pm 0.29 \pm 0.39$	$0.28 \pm 0.06 \pm 0.05 \%$
JCDV (μ)	$7.66 \pm 0.07 ~\%$	$0.113 \pm 0.018 ~\%$	$2.14 \pm 0.33 \pm 0.25$	$0.52 \pm 0.18 \pm 0.12 ~\%$
SLT (μ)	$4.54 \pm \ 0.06 \ \%$	$0.210\pm0.026~\%$	$2.01\pm0.13\pm0.22$	$0.85 \pm 0.15 \pm 0.19 ~\%$

M.Rescigno - Beauty 2005, June 20th 2008

Flavor tagging – Jet Charge

L≈290pb

1.0

|Q_{jet}|

jets with |Q_{iet}|=1

TABLE X. The statistical power ϵD^2 for the flavor tagging methods used: Jet-Charge Single Vertex (JCSV), Jet-Charge Double Vertex (JCDV), and Soft-Lepton Tag (SLT). Results for the e and μ trigger data are shown in separate rows. The sum is over bins of p_{T}^{rel} for the soft-lepton data and $|Q_{jet}|$ for the jet-charge data, as shown in Figures 7 and 9, respectively. The square of the dilution normalization factor N_D is used to rescale the $\sum_i \epsilon_i D_{\text{raw} i}^2$ value to give $\sum_i \epsilon_i D_i^2$. The first error is statistical, the second systematic.

Sample	Total ϵ	$\sum_{i} \epsilon_i D_{\text{raw } i}^2$	N_D	$\sum_{i} \epsilon_i D_i^2$
JCSV(e)	$41.55 \pm 0.14 \ \%$	$0.077 \pm 0.016 ~\%$	$1.88 \pm 0.20 \pm 0.15$	$0.27 \pm 0.06 \pm 0.04 \%$
JCDV (e)	$7.44 \pm 0.08 \ \%$	$0.159\pm0.023~\%$	$1.76\pm0.13\pm0.09$	$0.49 \pm 0.10 \pm 0.05 \%$
SLT (e)	$4.38 \pm 0.06 ~\%$	$0.329\pm0.033~\%$	$1.72 \pm 0.08 \pm 0.11$	$0.97 \pm 0.13 \pm 0.12$ %
$JCSV(\mu)$	$43.81 \pm 0.14 ~\%$	$0.048\pm0.012~\%$	$2.41 \pm 0.29 \pm 0.39$	$0.28 \pm 0.06 \pm 0.05 \%$
JCDV (μ)	$7.66 \pm 0.07 ~\%$	$0.113\pm0.018~\%$	$2.14 \pm 0.33 \pm 0.25$	$0.52 \pm 0.18 \pm 0.12~\%$
SLT (μ)	$4.54 \pm \ 0.06 \ \%$	$0.210\pm0.026~\%$	$2.01\pm0.13\pm0.22$	$0.85 \pm 0.15 \pm 0.19 ~\%$

	εD² (%)	
	(0.70±0.04)%	
	(0.37±0.03)%	
2ndary vtx	(0.36±0.02)%	
Displaced track	(0.36±0.03)%	
Highest p jet	(0.15±0.01)%	
	~1.6%	