

Introduction

B Physics at Hadron Colliders

- UA1 cross section measurements
- CDF fully reconstructed B->J/ $\psi K^{(*)}$

UA1 σ(b) in μ channel PLB 213, 415 (1988)

Since the 1980's

 $\begin{tabular}{l} \hline Advantages: \\ Large $\sigma(b) $ \times L \\ All $mesons $ and $ baryons $ All $mesons $ and $ baryons $ Triggerable: $ l $ or $ J/\psi $ Multipurpose $ detectors $ detectors $ multipurpose $ multipurpose $ detectors $ multipurpose $ mul$

Disadvantages: (perceived) High backgrounds Limited acceptance Small Lorentz boost Unknown initial state

5.6

- Study of Bc highlights hadron collider advantages
 - Large cross section for producing triggerable low background decays not accessible at the B factories.

W. Wester, CDF, Fermilab, Beauty 2005, Assisi

7/2/2005

Tevatron in Run II

1

 \mathcal{O}

W. Wester, CDF, Fermilab, Beauty 2005, Assisi

7/2/2005

Innermost silicon layer

Bc properties

- Bc is a heavy-heavy system
- contributions of color singlet / octet Chang et al, PRD, 71 (2005) 074012 - Production: Factorization with two scales M_b + M_c and
 - Softer P_T distribution?
- Decay: both b and c quarks can participate I
- Shorter *c-like* lifetime?
- Large number of final state BRs.
- botet contributions models and new lattice QCD calculations <u>Mass</u>: new system for potential I

p_t(GeV)

different singlet/

pepresent. curves

dovď p_t(mp/GeV)

experimental measurement => happening now at All aspects of the theoretical work require W. Wester, CDF, Fermilab, Beauty 2005, Assisi the Tevatron 7/2/2005

CDF: Bc in Run I ('91-'96)

A few candidate events at LEP and the CDF observation and measurements...

Production measurement ($P_{+}(B)>6$ GeV/c $|\eta|<0.6$): PRL 81, 2432 (1998) and PRD 58, 112004 (1998)

20.4^{+6.2} 20.4_{-5.5} signal events M=6.4±0.39±0.13 GeV CT = $0.46^{+0.18}_{-0.16} 0.03$ ps

Run II results: semi-leptonic decays

- $B_c \rightarrow J/\psi + I$ with $I = e, \mu$
- Not fully reconstructed (missing v)
- Understanding backgrounds are key
- bb events with the J/ψ from b and I from b
- Fake muons or fake electrons
- Other backgrounds
- Study J/\\\\+track and B_\\->J/\\\ K
- Look for B_c excess above background and make measurements

	c: B _c -> J/ψ μ X L-μμ	(signal+background) sample for background	Scan Monte Carlo in steps of different mass. Perform the fit with and without the Bc along with	prompt and non-prompt data bkgd distributions.	Cross-check the results using ψ(2S) + µ/track (background dominated).	2005, Assisi
Bcin	 Three muon final state - 0.21 fb⁻¹ of data 	 - 231 J/ψμX candidates - Use J/ψ+track control 	 prompt non-prompt Combined likelihood fit 	- Signal + background	 mass pseudo-lifetime 	7/2/2005 W. Wester, CDF, Fermilab, Beauty

NO NO	±11 B _c result" 0.34 <i>G</i> eV ³³ ±0.121 ps	DØ Note: 4539-CONF
results	$\frac{N_{CAND}}{95 \pm 12}$ "first 5_{0} "first 5_{0} <u>Mass:</u> $\frac{+0.14}{5.95_{0.13}}$ CT: 0.448_{-0.0}^{+0.1}	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
fits and	g likelininary ^{0,4} 0,45 0,5 0,55 0,55 0,55 0,55 0,55 0,55	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
Ö	Mass log likelihood cr lc	StatisticalStatisticalLimited statistics of background sampleFraction non-resonant $B_c^+ \rightarrow J/\psi \mu^+ \pi^0 \nu$ Feed-down fraction from $B_c^+ \rightarrow J/\psi (2S) \mu^+ \nu$ MC signal modeling: phase space vs. ISGWMC signal modeling: HQET vs. ISGWMc signal modeling: HQET vs. ISGWAlignment and primary vertexing algorithm $\mathcal{P}_{\rm fit}$ selection criterianoitivity to prompt/heavy relative bkgd fractionsTotal systematic error1/2/2005W. Wester, 0

CDF: Bc -> $J/\psi \mu X$

- Use 2.7M J/ ψ 's in 0.36 fb⁻¹
- Combine with third track with & w/o muon ID
 - P_T >3 GeV, ct > 60 μ m, and $\Delta\phi(J/\psi$ -trk) < 90 deg
- Use Bu->J/wK from data for normalization
- Use Monte Carlo of $B_{\rm u}$ and $B_{\rm c}$ for $\epsilon_{\rm rel}$
- Evaluate backgrounds in the data
 - Fake muons, bb, fake J/ψ
- Estimate systematic uncertainties
- Fit data in 4-6 GeV for signal and backgrounds
- Evaluate relative production of Bc to Bu

11

Fake muon background

How many come from J/\[\]+track where the track is a fake muon?

CDF Run II Preliminary: $L \approx 360 \text{ pb}^{-1}$

Fake muons primarily from decay in flight: 16.3±2.9 estimated in 4<M<6 GeV.

Fake muons: determine π , K, p composition vs P_T (dE/dx and TOF) and then use D^{*}, Λ decays to find fakes vs P_T

12

10

More backgrounds

- Bu->J/yK data using ∆∮ distributions (vary production) bb background from Pythia Monte Carlo normalized to
 - . Fake J/ ψ from J/ ψ sidebands

13

W. Wester, CDF, Fermilab, Beauty 2005, Assisi

7/2/2005

Muon channel results

Mass window	$3.0 - 4.0 \text{ GeV/c}^2$	$4.0 - 6.0 \text{ GeV/c}^2$	$6.0 - 10.0 ~{\rm GeV/c^2}$
		(signal)	
B_c candidates in mass window	7 ± 2.4	106 ± 10.3	19 ± 4.2
Fake muon background	3.9 ± 0.7	16.3 ± 2.9	2.2 ± 0.4
$B\overline{B}$ background	$0.6\pm0.4\pm0.1$	$12.7 \pm 1.7 \pm 5.7$	$6.0{\pm}1.1 \pm 1.8$
Fake J/ψ background	0.5 ± 0.5	19.0 ± 3.0	5.0 ± 1.7
Fake μ from $(J/\psi_{side} + Trk)$	0.3 ± 0.1	2.0 ± 0.5	$0.7{\pm}0.2$
Total Background	4.7 ± 0.9	$46.0{\pm}7.3$	12.5 ± 2.7
Events above background	2.5 ± 2.8	60.0 ± 12.6	$6.5{\pm}5.1$

Use MC for relative efficiency for Bc and Bu along with Bu->J/ ψ K to obtain:

P_T(B)>4 and |y| < 1 11 $\sigma(B_c) \times B(B_c \rightarrow J/\psi | v)$ $\sigma(B_u) \times B(B_u \rightarrow J/\psi K)$

 $0.249\pm0.045\pm0.069\pm_{0.033}^{0.082}$ Other measurements from this sample are CDF Note: 7649 in preparation.

14

CDF: Bc -> $J/\psi e X$

- Fake electron
- Use J/ ψ +track data
- Estimate fake rate from data ($D^0 \rightarrow K\pi, \Lambda^0 \rightarrow p\pi$)
- Photon conversion
 - Use J/y+tagged conversion data
- Conversion finding efficiency from MC
 - bb background
- $b \rightarrow J/\psi X$ and $b \rightarrow e X$
- PYTHIA bb Monte Carlo

W. Wester, CDF, Fermilab, Beauty 2005, Assisi

Photon conversions

- Remove conversions by finding the partner track during the electron selection
- Evaluate the conversion
 finding efficiency from MC
- Calculate the residual conversion background as a function of M(J/ ψ e) using J/ ψ +tagged conversions.
 - Expected background
- W. Wester, CDF, Fermilab, Beauty 2005, Assisi 14.54 ± 4.38(stat) ± 6.39 (syst) 7/2/2005

Background

CDF Run 2 Preliminary: ~360 pb⁻¹

DATA

63.6±4.9(stat)±13.6(syst) • Observed 178.5±14.7(stat)± Excess * Excess

Signal MC (Mass(B_c)=6.271GeV)

Background

114.9±15.5(stat)±13.6(syst) ²⁰E

- Significance **5.9**0
- $\sigma(B_c) \times B(B_c \rightarrow J/\psi |v)$

0.282±0.038(stat.)±0.035(yield)±0.065(acceptance)

						S5	18
	Iass	2 	Bu->J / \yr عقاوة	B⁺ → J/γr K⁺ 2252±53 candidates Resolution: 11.5±0.3 MeV/c² Fit Probability: 46 %		.4 5.45 5.5 5.55 5.6 5.6 .4 δ.45 Δ.5 5.5 5.6 5.6	
J/ ψ π	ies precise m 86fb ⁻¹	ure of merit discrete hins	CDF Run 2 Preliminary	°20,V9M ⋶ ni ≊94 350 00 00 00 00 00 00 00 00 00	Candida 250 200 250 200 250	5.15 5.2 5.25 5.3 5.35 5.	05, Assisi
CDF: Bc +	truction determir 0-50 events in 0.3	alysis "blind" MC signal using a fig action into lance	termined threshold	e result remente	on π coming from \[\u0357 vertex \]	oss-checks	W. Wester, CDF, Fermilab, Beauty 20
	 Full reconst Estimate 10 	 Perform an Optimize h 	- Use prede	 Tight require 	 Especially displaced J/ 	 Perform cr 	7/2/2005

Results

Small excess at 6.3 GeV above predetermined threshold

W. Wester, CDF, Fermilab, Beauty 2005, Assisi

7/2/2005

19

hep-ex/0505076

reconstructed sample Cross check: partially

- Look at partially reconstructed decays with M < M_{Bc}.
- 0.05 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 Impact Parameter of 3rd track wrt J/\v vtx (cm) 20 Impact Parameter of 3rd track wrt J/ ψ vtx (cm) $B_{c} \rightarrow J/\psi + track + X$ 172±49 candidates Blue: Lower side band
 Red: Upper side band $5.600 < M_{J/y\pi} < 6.187 \text{ GeV/c}^2$ χ^2 / ndf 63.9 / 48 Prob 0.06197 $172 \pm 49 \pm 15$ cand. B_c data 360 pb⁻¹ BC 0.0 0.03 0.02 CDF Run II Preliminary CDF Run 2 Preliminary 0.01 6 3 80 09 -20 4 8 enid mu 01 ni seintn∃ eseox∃ W. Wester, CDF, Fermilab, Beauty 2005, Assisi 5.4 5.5 5.6 5.7 5.8 Candidate mass (GeV/c²) $B^{+} \rightarrow J/\psi K^{+}$ ň 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 Impact parameter of the 3" track w.r.t. the Jiv vix (cm) B^{*}→ J/ψK^{*} decays 4422±81 candidates o₂ = 62±6 μm Fit Prob = 94.4% 360 pb⁻¹ 0, = 28±2 µm signal Sig $5.240 < M_{\rm Myk} < 5.340 \, {\rm GeV/c}^2$ Preliminary CDF Run 2 Preliminary 360 pb 5.2 5 "feed-down" 0.05 CDF Run II 4.9 Entries in 10 µm Kaon impact parameter w.r.t. J/w vtx (cm) 400 200 still point to the sideband should reconstructed 3rd track of Relax cuts track should J/ψ vertex have no Bc partially Upper 7/2/2005

Recent lattice QCD calculation

Recent calculation emphasizes new precision from 2+1 flavor lattice QCD with staggered quarks

Summary and conclusions

- The study of the Bc is happening in Run II
- Semi-leptonic decays observed >50
- DO: J/ψ μ (tri-muon)
- CDF: J/ ψ μ and J/ ψ e
- Small excess in CDF's J/y π sample
- Precision mass compared with theory
- · Coming soon ...
- Production spectrum and lifetimes
- Stronger fully reconstructed signal