

Top Quark at the Tevatron

Fermilab Tevatron:

- World's highest particle energy collisions
- ~4 miles circumference protonsantiprotons
- **Carter Service Service 3** Run I (1992-1996)
 - √s = 1.8 TeV
 - Discover top quark in 1994!
 - Integrated luminosity 120 pb⁻¹
- Run II (2001-present)
 - √s = 1.96 TeV
 - Integrated luminosity by April, 05:
 - In tape ~600pb⁻¹
 - Analyzed up to ~350 pb⁻¹

2 multi-purpose detectors

DØ and CDF

4/21/05

Run II Detectors

- Inner Silicon Tracking
- Tracking Chambers
- Solenoid
- EM and Hadronic Calorimeters
- Muon Detectors

Top Quark Physics

Top is very massive => It probes physics at much higher energy scale than the other fermions.

 M_{top} (Run I world average)= 178 ± 4.3 GeV

Top decays before hadronizing => momentum and spin information is passed to its decay products. No hadron spectroscopy.

$\tau_{top} \sim 10^{-24} \text{ sec}$

Top mass constrains the Higgs mass => M_{top}, enters as a parameter in the calculation of radiative corrections to other Standard Model observables it is also related, along with the mass of the W boson, to the that of the Higgs boson.

12 orders of magnitude for the fundamental SM fermions!!!!

Top Quark Production

In proton-antiproton collisions at TeVatron energies, top quarks are primarily produced in pairs via the strong interactions.

The Top Properties Tour

Event Topology

- Energetic, central, and spherical
- Missing transverse energy (E₁) from neutrino in lepton+jets and dilepton modes
- High transverse energy, E_{T.} jets
- Two b-jets
- Possible additional jets from gluon radiation (ISR, FSR)
- > Events are busy:
 - need to reconstruct parton level to measure top properties
 - different ways to assign jets to partons

General characteristics of the background:

- No neutrinos, less ET
- No b-jets
- Leptons could be fakes (less isolated)
- Less central

4/21/05

Tagging b-jets

- Use different properties of the B hadrons to identify (tag) them
 - Reduce backgrounds from light-quark/gluon jets
 - Reduce combinatorics effects

Jet Energy Scale (JES)

Jet Energy Scale Systematic Uncertainty

How well do we know the energy of the jets (or quarks)?

Events with lots of jets => dominant uncertainty for some top analyses, i.e, top mass in lepton+jets channel.

Publishing Top Quark Masses for 15 years

Top Quark Mass

4/21/05

Florencia Canelli - UCLA

15

Measuring the Top Quark Mass

- **C** Run II began in March 2001:
 - take data, commissioning detectors,
 - calibrate detectors,
 - tune Monte Carlo and detector simulation,
 - prepare analysis
- By the end of 2004 after 3 years of Run II running the top mass measurement did not reach to Run I precision (~5.1 GeV)
- Better precision comes from I+jets (golden channel), but are we looking at the same top among channels?
- By the end of Run I, the JES uncertainty was as large as the statistical uncertainty ~3.5 GeV
- Different methods: try to optimize the statistical and systematic performance

Results by the end of 2004

Two different techniques: Template and Matrix Element based

4/21/05

Template Technique

- Determine mass of the top quark using a quantity strongly dependent on the top quark mass M_{top} (usually *Reconstructed M_{top}*)
- Determine the Reconstructed M_{top} per event: Minimize a χ² expression for the resolutions and kinematic relationships in the ttbar system. Choose jet to parton assignment and P^v_z based on best fit quality. Build signal and background templates
- Obtain the measurement from the data: Compare Reconstructed M_{top} from data with same from randomly generated and simulated signal at various input top mass (M_{top}) and backgrounds using an unbinned likelihood fit

Template Analysis at CDF

- Improve statistical power of the method dividing the sample in 4 subsamples that have different background contamination and different sensitivity to the top mass
- Extend 1-D template (only on *Reconstructed M_{top}*) to maximize sensitivity to JES:
 - M_{top} and JES are simultaneously determined in likelihood fit using shape comparisons of *Reconstructed M_{top}* and, *Reconstructed M_{jj}* distributions, taking correlations between them
 - Use a priori CDF information on JES (page 8): JES Gaussian constraint (mean=0, width=1 σ) $-\ln L_{JES} = \frac{(JES - JES_{STD})^2}{2\sigma^2} = \frac{(JES - 0)^2}{2\cdot 1^2}$

Sample	# b-tags	Jet E _T cut [GeV]
2-tag	2	3 jets w/ E _T >15
		4 th jet w/ E _T > 8
1-tag(L)	1	3 jets E _T > 15
		4 th jet 8 < E _T <15
1-tag(T)	1	4 jets E _T > 15
0-tag	0	4 jets E _T > 21

 $L_{total} = L_{2tag} \times L_{1tagT} \times L_{1tagL} \times L_{0tag} \times L_{JES}$

4/21/05

Template Results from CDF

Template Results from CDF

S(d)

-Log Likelihood vs M_{top}, JES

CDF Run II Preliminary (318 pb⁻¹)

175

180

Systematic uncertainties

Source	$\delta M_{top}(GeV/c^2)$
B-jets modeling	0.6
Method	0.5
ISR	0.4
FSR	0.6
Background shape	1.1
PDF	0.3
Other MC modeling	0.4
Total	1.7

Most of these can be reduced with more data

Measurement is more precise than the current world average!

4/21/05

Florencia Canelli - UCLA

-5

-15

-20

-25

-30

-35

-40

185

M_{top} (GeV

-10 -10

Template Results from DØ

Matrix Element Technique

Determine mass of the top quark evaluating a probability using all the variables in the event, integrate over all unknowns

 $d^n \sigma$ is the differential cross section: LO Matrix element

W(y, x) is the probability that a parton level set of variables y will be measured as a set of variables x

$$P(x; M_{top}) = \frac{1}{\sigma} \int d^n \sigma(y; M_{top}) \frac{dq_1 dq_2 f(q_1) f(q_2) W(x, y)}{dq_1 dq_2 f(q_1) f(q_2) W(x, y)}$$

f(q) is the probability distribution than a parton will have a momentum q

- Sum over all permutations of jets and neutrino solutions
- Background process probabilities are or not be explicitly included in the likelihood
- **Top mass: maximize** $\Pi_i P^i(x; M_{top})$
 - Each event has its own probability
 - Correct permutation is always considered (along with the other eleven)
 - All features of individual events are included, thereby well measured events contribute more information than poorly measured events

Matrix Element at DØ

C Last result from Run I: June, 2004

Nature Vol 429, Page 640

- Reduced the statistical uncertainty from 5.6 to 3.6 (expected error from 7.4 to 4.4) => 2.4 times more data
- Total uncertainty from 7.3 (lepton+jets CDF) to 5.3 (D0)

4/21/05

Other Matrix Element based M_{top}

0 **DLM**: only a signal probability, 22 events joint likelihood CDF Run II Preliminary (162 pb⁻¹) requires b-tagging 12 After Background Consideration(4.2 events) 10 $177.8 \pm rac{4.5}{5.0}$ (stat.only) $extbf{GeV/c}^2$ New results with decrease JES 0 -2In(L/L_{max}) 8 and more data coming soon! $176.5 \pm \frac{3.4}{3.8}$ GeV/c² $M_{top} = 177.8 \pm _{5.0}^{4.5} (stat) \pm 6.2(syst) \text{ GeV/c}^2$ D0 Run II Preliminary 14 2 log(likelihood) Ideogram: Uses same kinematic 1 12 lepton + jets fit as $D \varnothing$ template method, and 10 includes \mathbf{D}_{LB} discriminant in 8 likelihood fit 6 Uses background probability 0 4 2 0 120 140 160 180 200 220 $M_{top} = 177.5 \pm 5.8(stat) \pm 7.1(syst) \text{ GeV/c}^2$ top mass (GeV) 4/21/05

Current Best Results in Dilepton Channel

Summary of Top Mass Results

4/21/05

W helicity

Longitudinal Fraction, F₀

- **C** Likelihood analysis of P_T spectrum
- Combined lepton+jet and dilepton samples: 70 events

$F_0 = 0.27 \pm_{0.21}^{0.35} (stat + syst)$ $F_0 < 0.88@95\%CL$

\bigcirc Assuming F₊=0

4/21/05

- Dominated by statistical uncertainties
- **C** Run I best result ($D \emptyset$) 125pb⁻¹: 0.56 +- 0.31 using ME Technique

- Likelihood analysis of $\cos \theta^*$
- Combined lepton+jet and dilepton samples: 31 events

Right Handed Fraction, F₊

1

b-tagged selection: 31 events

- **Likelihood on cos**θ*
- Topological selection: 80 events

ttbar Spin Correlations

- Agreement between \u03c8_{ttbar} experimental and theoretical expectations => assume top has spin 1/2.
- Since $\Gamma_t \sim 1.4 \text{ GeV}$
 - spin transferred to final state (decay products correlated to top quark spin).
 - use polarization properties of the top quark as additional observables for testing the SM and to search for New Physics.
- Can be observed in single-top since it is produced 100% correlated.
- Some net polarization of top quark in pair production: N(t₁)=N(t₁) but in the proper spin quantization axes a large asymmetry between like- and unlike-spin configurations can be observed
- \leftarrow k = 0.88 SM, correlation coefficient between top- antitop spin polarizations.
- DØ Run I: k>-0.25 @ 68% CL.
- CDF Run II preliminary sensitivity study 340pb-1 σ =1.6, 2fb-1 σ =0.62.

4/21/05

ppbar->X->ttbar

Test ttbar production from new sources such as narrow resonances

$$p\overline{p} \to X^0 \to t\bar{t}$$

- Many models of New Physics predict new particles coupled to the 3rd generation, in particular the top quark.
- Better analyses techniques, from templates to ME based searches.
- Use the differential cross section to reconstruct the M_{ttbar} at parton level.
- Follow template procedure for establishing limits.

SM ttbar (Pythia) Red : parton level Mttbar Blue: reconstructed Mttbar

Run I search of Z' with G=1.2%M: CDF(D0): M_z.>480(560) GeV @ 95% CL

4/21/05

Conclusions

- Top quark physics program at the Tevatron Run II is extremely rich: from QCD tests to search for New Physics.
- Challenging final states:
 - requires to fully use detector capabilities
- Method of extraction of observables are getting far more sophisticated:
 - making maximal use of the statistics
 - smarter ways to account for systematic uncertainties
- We are moving from discovery to precision measurements of top quark properties.

$$M_{top} = 173.5_{-4.0}^{+4.1} \text{GeV/c}^2$$

Top Quark at APS

- Top Mass in all-jets channel CDF, Georghe Lungu, Top Quark Session I, yesterday: using ME
- Top Mass in dilepton channel CDF, Tuula Maki, Top Quark Session I, yesterday: using Pz ttbar
- Top Mass in dilepton channel CDF: Simon Sabik, Top Quark Session I, yesterday: using neutrino weighting
- Top Mass in lepton+jets channel CDF: Jean-Francois Arguin, Top Quark Session I, yesterday: using 2-D template
- Top Mass in lepton+jets CDF/LHC: James Lamb, Top Quark Session I, yesterday: using decay length
- Top Mass in lepton+jets D0: Philipp Schienferdecker, Top Quark Session II, today: using D0 matrix element in Run II
- Top Mass in lepton+jets D0: Robert Harrington, Top Quark Session II, today: using D0 matrix element in Run II + b-tagging
- **C** Top Mass in dilepton D0: Petr Homola, Top Quark Session II, today: neutrino weighting
- Top Mass in lepton+jets D0: Martjin Mulders, Top Quark Session II, today: matrix element Ideogram
- **C** Top Mass in dilepton D0: Jeff Temple, Top Quark Session II, today: neutrino weighting
- X->ttbar at CDF: Top Quark Session III, Brandon Parks, Valentin Necula, NN and ME technique
- S W-helicity: Top Quark Session III, Bryan Gmyrek, cos(theta*)

M_{top} Measurement in lepton+jets Channel

- Larger branching ratio
- Reasonable Signal/Background
- Over-constrained kinematics
- Signature
 - Two b quarks
 - Two light quarks
 - High p_T lepton
 - Neutrino (undetected)
 - $\mathbf{I}_{\mathbf{x}}$ and $\mathbf{P}_{\mathbf{y}}$ from $\mathbf{E}_{\mathbf{T}}$ conservation
 - P, constrained by kinematics

Leading 4 jets combinatorics

- 12 possible jet-parton assignments
- 6 with 1 b-tag
- 2 with 2 b-tags

ISR + FSR: Extra jets from initial/final state gluons

4/21/05

M_{top} Measurement in Dilepton Channel

a

C

- Less statistics
- Excellent S/B
- Underconstrained kinematics: need to assume knowledge of some quantity
- Less combinatorics: 2 jets
- Smaller jet systematics
- **Signature:**
 - Two b quarks
 - Two high P_T leptons
 - Two neutrinos
- Typical event selection:
 - **One high** P_{T} **lepton (>15 GeV)**
 - Oppositely charged high P_T lepton or isolated track (>15 GeV)
 - **Two or more high** P_T **jets (>20 GeV)**
 - ➡ E7 (>25 GeV)

Backgrounds:

000000

g

Diboson, Drell-Yan, Z->tautau,W+jets (fake lepton)

4/21/05

w