Electroweak Physics at CDF

- Why Electroweak measurements at the Tevatron?
- CDF-II Detector performance
- Highlights
 - W and Z production cross-sections
 - W Boson mass measurements
 - Di-boson production

William Trischuk University of Toronto/CDF April 17, 2005

Electroweak Physics at the Tevatron

- Z boson properties well known from LEP
- W samples at Tevatron can compete
 - Branching fractions
 - Mass
 - Di-boson correlations
- Only source of electroweak bosons
 - through middle of the decade

The Fermilab Accelerators

- Luminosity
 - $10^{31} \rightarrow 10^{32}$
- Bunch spacing - $3.5 \ \mu s \rightarrow 396 \ ns$
- Antiproton stacking
 Up by factor of 10
- Collision energy
 - $1.8 \rightarrow 1.96 \text{ TeV}$
- Good data since
 - Spring 2002
 - 600 pb^{-1} in three years

The CDFII Detector

- Completely replaced tracking volume
- Forward calorimetry from gas sampler to scintillator
- Filled in muon coverage to $\eta = 1.5$
- Upgraded all front-end electronics and DAQ for higher rates

Accelerator and Detector Performance

Collider Run II Integrated Luminosity

- We are now routinely setting instantaneous luminosity records
- The results presented here range from
 - 70 pb^{-1} for W and Z cross-section measurements
 - 200 pb^{-1} for W mass studies
 - 400 pb^{-1} for measurements this summer

Analysis Strategy

- Concentrate on clean boson decay signatures: charged leptons
 - Only 10% of W decays
 - Only 3% of Z decays

W^{\pm} Boson Production

Electron Signal

• Vector boson cross-section measurements are systematics limited

Muon Signal

 $254 \pm 3(stat) \pm 5(sys) \pm 15(lum)$ pb

70 page PRD in preparation describing these measurements

Summary of Cross-Sections

• Measurements provide impressive confirmation of Standard Model

- Theory predicts σ scaling
- LHC proposes to make W^{\pm} and Z^0 the basis for \mathcal{L} normalisation
- Working to improve techniques see Kathy Copic: Session E7

W to τ Branching Ratio

- Identify $W \rightarrow \tau \nu$ candidates with
 - One or three isolated charged tracks
 - Charged track mass less than m_{τ}

- 2345 $W \rightarrow \tau \nu$ candidates with 26 % background
- $\sigma \cdot \mathcal{B}(W \to \tau v) = 2620 \pm 70(stat) \pm 210(sys) \pm 160(lum) \text{ pb}$

Weak Decay Lepton Universality

• Determine coupling of *W* to different leptons

$$\frac{\sigma \cdot \mathcal{B}(W \to l_x \nu)}{\sigma \cdot \mathcal{B}(W \to e\nu)} = \frac{\Gamma(W \to l_x \nu)}{\Gamma(W \to e\nu)} = \frac{g_x^2}{g_e^2}$$

• Many systematics cancel in ratio

$$\frac{g_{\mu}}{g_{e}} = 0.998 \pm 0.012$$

- This is competitive with LEP (0.993 ± 0.013)
- Similar for $W \to \tau$

$$\frac{g_{\tau}}{g_e} = 0.99 \pm 0.04$$

W Charge Asymmetry

• Use *W* bosons to probe proton structure(u/d ratio) $d\sigma(W^+)/dy - d\sigma(W^-)/dy$

$$A(y_W) = \frac{d\sigma(W^-)/dy}{d\sigma(W^+)/dy + d\sigma(W^-)/dy}$$

• Measure charged lepton asymmetry: inverted by V - A coupling

$$A(\eta_l) = \frac{d\sigma(l^+)/d\eta - d\sigma(l^-)/d\eta}{d\sigma(l^+)/d\eta + d\sigma(l^-)/d\eta}$$

- Must minimise and quantify charge misID rate (4 % at $|\eta|\approx 2$)
- Extend charge identification with silicon stand-alone tracking

Constraints on Proton Parton Densities

- Deconvolute lepton asymmetry
- Through V-A decay inversion
- To extract information on parton momentum distributions

- Published in hep-ex/0501023
- Results being incorporated in PDF fits
- More information in talk by Boyoung Han: Session E7

The W Mass

- W^{\pm} mass related to
 - t quark and H^0 mass
 - through radiative corrections
- The state of the art is currently
 - LEP: $80,447 \pm 42$ MeV
 - Tevatron: $80,454 \pm 59 \text{ MeV}$
- Eventually get several 40 MeV
 - from the Tevatron experiments

Measuring the W Mass

- Clean signals for both $W \rightarrow e, \mu \nu$
 - Don't measure neutrino directly
 - Infer its transverse momentum
 - Measure the transverse mass
- Cannot calculate analytically
 - Simulate production kinematics
 - Detector resolution
 - Lepton radiation and energy loss

$$m_T = \sqrt{[E_T(l) + E_T(v)]^2 + [p_T(l) + p_T(v)]^2}$$

$$m_T = \sqrt{2p_T(l)p_T(\mathbf{v})\{1 - \cos[\phi(l) - \phi(\mathbf{v})]\}}$$

W Boson Production

- W fitting lineshapes sculpted by longitudinal momentum distribution from parton distribution functions
 - CTEQ provides Error PDFs
 - 90 % coverage of input data
- Lineshape prediction also models

- Gluon radiation W polarisation (RESBOS, NLO QCD)
- Photon radiation (internal, external) (WGRAD, NLO QED)
- Detector's response to these at better than 0.1 % !
- More information in talk by Ian Vollrath: Session E7

Systematic Uncertainty: $\Delta M_W = 30 \text{ MeV}$

Tracker Calibration

- Momentum scale calibration
- Largest systematic for muons
- Constrain/Calibrate with
 - $J/\psi \rightarrow \mu^+ \mu^-$
 - $\Upsilon(1S) \rightarrow \mu^+ \mu^-$
 - Cross-check with $Z \rightarrow \mu^+ \mu^-$

Systematic Uncertainty: $\Delta M_W = 30 \text{ MeV}$

Calorimeter Calibration

- Energy Scale calibration
- Constrain/Calibrate with
 - $B \rightarrow ev$ to equalise tower gains

Systematic Uncertainty: $\Delta M_W = 65 \text{ MeV}$

- E/p from W electrons

Subtleties Measuring Neutrino

• Measure neutrino as observed momentum imbalance

$$\vec{p}_T(\mathbf{v}) = \vec{u} - \vec{p}_T(l^{\pm})$$

• Measure \vec{u} from recoil energy seen in calorimeter

Systematic Uncertainty: $\Delta M_W = 10 \text{ MeV}$

Constraints on Underlying Event Model

• Use $Z \rightarrow l^+ l^-$ events to measure detector response to \vec{u}

Systematic Uncertainty: $\Delta M_W = 50 \text{ MeV}$

Underlying Event Bias in Model

• Bias in *u*_{parallel} feeds directly in *W* mass

$$m_T = \sqrt{2p_T(l)p_T(\mathbf{v})\{1 - \cos[\phi(l) - \phi(\mathbf{v})]\}}$$

• Model agrees with data within statistical uncertainties

Backgrounds in *W* **Samples**

Muons

W Mass Fits

The Bottom Line (for now)

- Working to reduce systematics
 - Alignment of tracker (charge bias)
 - Recoil resolution and $p_T(W)$
 - Passive material and radiation

Uncertainty	Electrons	Muons
Statistics	45	50
Mom Scale	70	30
Recoil	50	50
Bkgnds	20	20
W Model	30	30
Total	105	85

- Combining two results (including correlations)
- Overall uncertainty $\Delta M_W = 76 \text{ MeV}$
- Already better than CDF-I

- Probe *WW*γ coupling
- Select W with high p_T leptons
- Photon identification:
 - $|\eta| \le 1.1$ and $R(\gamma l^{\pm}) \ge 0.7$

- $\sigma(p\bar{p} \to W\gamma) = 18.1 \pm 1.6(stat) \pm 2.4(sys) \pm 1.2(lum) \text{ pb; } E_{\gamma} \ge 7 \text{ GeV}$
- SM predicts 19.3 ± 1.4 pb
- Insufficient statistics for angular analysis at this stage

$p\bar{p} \rightarrow WW$ Production

- LEP-2 experiments have large statistics
- Tevatron production well beyond threshold
- An even more interesting background

 $gg \rightarrow H \rightarrow WW$

- A first step to WWZ coupling measurements
- Non-SM heavy boson states

$p\bar{p} \rightarrow WW$ Cross-Section

- Published result based on 200 pb⁻¹
- Signal established
- Studies of $W(l\nu)W(jj)$ underway

Luminosity	200pb-1
WW signal	11.3+/-1.3
Background	4.8+/-0.7
Expected total	16.1+/-1.6
Observed	17

- $\sigma(p\bar{p} \to WW) = 14.6 \pm 5.5(stat) \pm 2.4(sys) \pm 0.9(lum) \text{ pb}$
- SM predicts 12.4 ± 0.8 pb
- No obvious inconsistency with SM here either
- More information in talk by Jorgen Sjolin: Session E7

Summary and Prospects

- Have surpassed LEP precisions in *W* couplings
 - Establishing the foundation for future Electroweak measurements
- Making progress on the *W* mass
 - Statistics sufficient to make sub-40 MeV measurement
 - Should have control samples to improve systematics to this level
- Just embarking on di-Boson measurements
 - Should improve precision on triple boson couplings
- 600 pb^{-1} data on tape now
- Expect at least another factor of four before LHC starts