
 UNPK_GRIB2 
 3/15/02    
 
 

 
 -1- 

UNPK_GRIB2 
 

UNPACKS DATA FROM GRIB2 FORMAT 
 
 Bryon Lawrence 
 April 5, 2001  
 Bob Glahn      
 David Rudack   
 March 15, 2002 
 
 
PURPOSE:  To unpack a gridded data field and its associated 

defining data from a GRIB2 message using the algorithm 
put forth in version two of the World Meteorological 
Organization=s (WMO) standard for the exchange of General 
Regularly-distributed Information in Binary form (GRIB2). 
 In addition to decoding and returning a gridded data 
field, this GRIB2 decoder also returns information that 
identifies and defines the data field.  Such information 
includes the time of generation of the  gridded product, 
the source of the gridded product, the type of map 
projection the gridded product uses, what the data in the 
gridded product represent, and which packing method was 
used to compress the data in the gridded product. 

 
Depending on the type of data contained within the data 
field, the unpacked data field is returned to the user 
either in a floating point or integer array.  The 
additional data defining and identifying the gridded 
product are returned to the user through eight integer 
Asection@ arrays.  Each of these arrays corresponds to 
one of the sections (Sections 0, 1, 2, 3, 4, 5, 6, and 7) 
that form the structure of a GRIB2 message.  Note that no 
information is returned from this unpacker concerning 
Section 8 (the End Section); this GRIB2 section is only 
used internally by the unpacker.  Also note that Section 
2, the Local Use Section, is optional and may not be 
present in the GRIB2 message. 

 
The simple, complex, and complex with second order 
spatial differencing data packing schemes are recognized 
by this routine.  If the simple packing method was used 
to create the GRIB2 message, then the unpacked data field 
may contain primary missing values.  If the complex or 
complex with second order spatial differences packing 
method was used to compress the data, then the unpacked 
data field returned may contain both primary and second-
ary missing values. 

 
As a carry over from GRIB version 1, GRIB2 continues to 
allow the use of a bit-map (or bit-mask) to indicate the 
positions of primary missing values in a data field.  



 UNPK_GRIB2 
 3/15/02    
 
 

 
 -2- 

However, the MDL GRIB2 decoder only allows the use of a 
bit-map while unpacking data using the simple or complex 
methods.  The use of a bit-map with complex with second 
order spatial differences is not supported.  The complex 
packing methods now have an alternative, and usually more 
space efficient, way of dealing with missing values that 
eliminates the need for a bit-map.  However, it is still 
necessary to use a bit-map to locate the positions of 
missing values in a data field that was packed using the 
simple packing method. 

 
When unpacking a data field that was packed using the 
simple packing method, and there is a bit-map accompany-
ing the data field, the user is given the option of 
having the data field returned with the primary missing 
values embedded in it or without the primary missing 
values.  This is accomplished by manipulating the value 
of the AICLEAN@ calling argument (see below). 

 
More than one data grid may be contained within a GRIB2 
message.  This routine provides the functionality needed 
to unpack multiple data grids from a single GRIB2 
message.  This is accomplished through repetitive calls 
to this routine with the ANEW@ calling argument (see 
below) properly set while testing the value of the 
AIENDPK@ calling argument (again, see below) after each 
call to this routine.  According to WMO GRIB2 regula-
tions, Sections 2 through 7, 3 through 7, or 4 through 7 
may be repeated for each data grid packed into the GRIB2 
message. 

 
For a complete description of the GRIB2 format, tem-
plates, and code tables, the user is referred to the WMO 
document FM 92-XII GRIB. 

 
 
CALL AND EXPLANATION OF FORMAL PARAMETERS: 

 
CALL UNPK_GRIB2(KFILDO,A,IA,ND2X3,IDAT,NIDAT,RDAT, 

     1    NRDAT,IS0,NS0,IS1,NS1,IS2,NS2,IS3,NS3, 
     2    IS4,NS4,IS5,NS5,IS6,NS6,IS7,NS7,IB, 
     3    IBITMAP,IPACK,ND5,XMISSP,XMISSS,NEW, 
     4    ICLEAN,L3264B,IENDPK,JER,NDJER,KJER) 
 

KFILDO - Unit number of the output diagnostic (print) file. 
 All lines of source that create diagnostic output 
in the unpacker routine are Acommented out@ with a 
AD@ in column 1 of the source code.  If the user 
desires that diagnostic information be generated 
when this unpacker is executed, then the option 
specific to the Fortran compiler being used to 
compile the unpacker library that allows the compi-



 UNPK_GRIB2 
 3/15/02    
 
 

 
 -3- 

lation of debug lines as source code must be used. 
 When diagnostic information is desired, the user 
must make sure that the file represented by this 
number has been opened prior to calling the 
Aunpk_grib2" routine.  (INPUT) 

 
A(L) -  The unpacked gridpoint data are returned to the 

caller in this array when the original packed data 
field consisted of floating point values 
(L=1,ND2X3).  If the original packed data field 
consisted of floating point values, then element 21 
of the IS5( ) array will contain a value of A0".  If 
the original packed data field consisted of integer 
values, then the unpacked grid point data will be 
returned to the caller of this routine in the IA( ) 
array.  (OUTPUT) 

 
IA(L) - The unpacked grid point data are returned to the 

caller of this routine in this array when the 
original packed data field consisted of integer 
values (L=1,ND2X3).  If the original packed data 
field consisted of integer values, then element 21 
of the IS5( ) array will contain a value of A1".  If 
the original packed data field consisted of 
floating point values, then the unpacked grid point 
data will be returned to the caller of this routine 
in the A( ) array.  (OUTPUT) 

 
ND2X3 -  The dimension of A( ), IA( ), and IB( ).  It should 

be at least the same size as the number of grid 
points in the data field.  (OUTPUT) 

 
IDAT(L) - Contains the integer local use data (if any) that 

were unpacked from Section 2, the Local Use Sec-
tion, of the GRIB2 message (L=1, NIDAT).  See the 
special documentation below describing the format 
of the local use data returned by the MDL GRIB2 
decoder.  (OUTPUT) 

 
NIDAT - The number of elements in the IDAT( ) array.  Must 

be made large enough to contain any integer value 
local use data contained within the GRIB2 message. 
 (INPUT) 

 
RDAT(L) - Contains the floating point local use data (if any) 

that were unpacked from Section 2, the Local Use 
Section, of the GRIB2 message (L=1,NRDAT).  See the 
special documentation below detailing the format of 
the local use data returned by the MDL GRIB2 decod-
er.  (OUTPUT) 

 



 UNPK_GRIB2 
 3/15/02    
 
 

 
 -4- 

NRDAT - The number of elements in the RDAT( ) array.  Must 
be large enough to contain any floating point local 
use data unpacked from the GRIB2 message.  (INPUT) 

 
  IS0(L) - Contains the unpacked values for Section 0, the 

Indicator Section, of the GRIB2 message being 
decoded (L=1,NS0).  See the GRIB2 section outline 
below for an overview of the contents of Section 0. 
 (OUTPUT) 

 
NS0 - The dimension of IS0( ).  NS0=16 is sufficient.  

(INPUT) 
 

IS1(L) - Contains the unpacked data values for Section 1, 
the Identification Section (1,NS1).  See the GRIB2 
section outline below for an overview of the con-
tents of Section 1.  (OUTPUT) 

 
NS1 - The dimension of IS1( ).  NS1=21 is sufficient.  

(INPUT) 
 

IS2(L) - Contains the length, section number, and total 
number of local use data groups that were unpacked 
from Section 2, the Local Use Section (L=1,NS2).  
If no local use section exists, then the length of 
Section 2 will be reported as A0."  The first 
elements of the IDAT( ) and RDAT( ) arrays will 
also have values of A0".  See the special documen-
tation below concerning Section 2 and the format of 
local use data returned from this routine.  (OUT-
PUT) 

 
  NS2 -  Dimension of IS2( ).  It must be a large enough 

dimension to contain any data the that may be 
unpacked from the local use section.  (INPUT) 

 
IS3(L)-  Contains the unpacked data values for Section 3, 

the Grid Definition Section, of the GRIB2 message 
being decoded (L=1,NS3).  Section 3 defines the 
type of map projection that the data field uses.  
See the GRIB2 section outline below for an overview 
of the contents of Section 3.  (OUTPUT)   

 
NS3 - The number of elements in the IS3( ) array.  Since 

the grid definition templates are of variable size, 
the value of this parameter depends upon what type 
of map the data field being unpacked is projected 
on.  NS3=96 is sufficient for all templates except 
template 3.120, the Azimuth-Range Projection, which 
is commonly used for radar images.  In the case 
where template 3.120 is being used, NS3=1600 should 
be sufficient.  (INPUT) 



 UNPK_GRIB2 
 3/15/02    
 
 

 
 -5- 

IS4(L)-  Contains the unpacked data values for Section 4, 
the Product Definition Section, of the GRIB2 mes-
sage being decoded (L=1,NS4).  Section 4 defines 
what the data field being unpacked represents, i.e. 
do the data represent a map of 1-hour rainfall 
totals or do they represent the height contours on 
an Aviation Model 500-mb height forecast grid.  See 
the GRIB2 section outline below for an overview of 
the contents of GRIB2 and Section 4.  (OUTPUT) 

 
NS4 - The number of elements in the IS4( ) array.  Since 

the product definition templates are of variable 
size, the value of this parameter depends on what 
type of product is represented by the data field 
being unpacked from the GRIB2 message.  For this 
GRIB2 decoder, NS4=60 should be sufficient for all 
of the supported Section 4 product definition 
templates, with the possible exception of template 
4.30, the Satellite Product, which could require 
more array space depending on the number of con-
tributing bands in the satellite image.  (INPUT) 

 
IS5(L) -  Contains the unpacked data for Section 5, the Data 

Representation Section (L=1,NS5).  Section 5 indi-
cates which packing method was used to pack the 
gridded data field into the GRIB2 message.  See the 
GRIB2 section outline below for an overview of the 
contents of Section 5.  (OUTPUT) 

 
NS5 -  The dimension of the IS5( ) array.  NS5=49 is 

sufficient for all of the packing methods recog-
nized by this decoder.  (INPUT) 

 
IS6(L) -  Contains the unpacked data for Section 6, the Bit-

map Section (L=1,NS6).  These data consist of 
information specifying the length of Section 6, the 
section number, and a bit-map indicator which 
indicates whether or not a bit-map is present in 
the GRIB2 message.  Note that the actual bit-map, 
if it exists, is returned to the caller in the 
IB( )array.  See the GRIB2 section outline below 
for an overview of the contents of Section 6.  
(OUTPUT) 

 
NS6 -  Size of IS6( ).  NS6=6 is sufficiently large for 

all products.  (INPUT) 
 

IS7(L) -  Contains the unpacked data for Section 7, the Data 
Section (L=1,NS7).  See the GRIB2 section outline 
below for an overview of the contents of Section 7. 
 Note that the actual unpacked gridded data are not 
returned via this array.  Rather they are returned 



 UNPK_GRIB2 
 3/15/02    
 
 

 
 -6- 

in the A( ) or IA( ) arrays (see above) depending 
on the type of the gridded data (as indicated by 
octet 21 of Section 5).  (OUTPUT) 

 
NS7 -  Dimension of IS7( ).  A value of at least A8" is 

required for this parameter.  (INPUT) 
 

IB(L) - Contains a bit-map indicating the locations of 
primary missing values in the unpacked data grid.  
A bit-map will be returned to the user only when a 
bit-map was packed into the GRIB2 message and the 
user requests it (see ICLEAN above).  (OUTPUT) 

 
IBITMAP - Indicates whether or not a bit-map is being re-

turned from this routine in the IB( ) array.  A 
value of A0" means that a bit-map is not being 
returned.  A value of A1" means that a bit-map is 
being returned.  (OUTPUT) 

 
IPACK(L)- The GRIB2 message to be unpacked is supplied by the 

caller of this routine in this array (L=1,ND5).   
(INPUT) 

 
ND5 -  Dimension of IPACK( ).  Must be dimensioned large 

enough to contain the entire packed product.   
(INPUT) 

 
XMISSP-  The floating point representation of the primary 

missing value.  This value is set by the unpacker 
when either the complex or complex with second 
order spatial differences packing methods was used 
to create the GRIB2 message and element 23 of the 
IS5( ) array indicates that there are primary 
missing values.  A value will not be returned in 
this parameter if the simple packing method was 
used to create the GRIB2 message.  If the simple 
packing method was used, and the user wants the 
unpacked data field returned with the missing 
values embedded within it, then the value to use to 
indicate a missing datum must be passed into this 
routine by this parameter.  (INPUT/OUTPUT) 

 
XMISSS -  The floating point representation of the secondary 

missing value.  This value is set by the decoder 
when either the complex or complex with second 
order spatial differences packing methods was used 
to create the GRIB2 message and element 23 of the 
IS5( ) array indicates that there are primary and 
secondary missing values in the data field.  A 
value will not be returned in this parameter if the 
simple packing method was used to create the GRIB2 
message.  With the complex packing method, second-



 UNPK_GRIB2 
 3/15/02    
 
 

 
 -7- 

ary missing values are only allowed if there can be 
primary missing values.  Secondary missing values 
are not supported with the simple packing method or 
with the complex and second order spatial differ-
ences packing method.  (OUTPUT) 

 
NEW - Indicates whether or not this is the first data 

grid to be unpacked from a GRIB2 message.  A value 
of A1" indicates that this is the first grid to be 
unpacked.  A value of A0" indicates that this is not 
the first grid to be unpacked.  When unpacking 
GRIB2 messages that contain only one packed data 
grid, this parameter must always be A1".  When 
unpacking a GRIB2 message that contains more than 
one packed data grid, then this parameter must be 
A1" on the first call to the packer and then A0" on 
all subsequent calls to the unpacker.  (INPUT) 

 
ICLEAN - A flag that applies only if the simple or the 

complex packing method was used to create the GRIB2 
message and there was a bit-map packed into this 
message.  It does not apply to complex packing with 
second order spatial differences.  A value of A1" in 
this calling argument means that the user wants the 
unpacked data field to be returned without any 
missing values in it.  A value of A0" means that the 
user wants the unpacked data field to be returned 
with the missing values embedded in it.  (INPUT)  

 
L3264B -  Integer word length in bits of the machine being 

used (either 32 or 64).  (INPUT) 
 

IENDPK -  Parameter indicating whether or not there are 
additional data grids to be unpacked within the 
GRIB2 message.  A value of A1" means that the 
unpacking of the GRIB2 message is complete; there 
are no more data grids to unpack from the GRIB2 
message.  A value of A0" means that the there are 
additional data grids to be unpacked from the GRIB2 
message.  It will be necessary to call the 
Aunpk_grib2" routine at least once more to com-
pletely unpack the GRIB2 message. (OUTPUT) 

 
JER(L,M)- Contains any diagnostic or error codes along with 

their severity levels generated in this routine 
(L=1,NDJER) (M=1,2).  This error-handling scheme 
was developed to preserve all diagnostic informa-
tion generated during the execution of this rou-
tine.  Since some error codes are non-fatal and 
offer information that is of diagnostic value, it 
is possible that a run of this GRIB2 decoder may 
generate several diagnostic codes.  This array 



 UNPK_GRIB2 
 3/15/02    
 
 

 
 -8- 

provides the user with a way of deducing an error 
Atrace back.@  This error handling scheme works as 
follows: 

 
The rows in the JER array represent individual 
error occurrences.  The first column in the JER 
array represents the error code; the second column 
represents the severity of the error code. 

 
There are three severity levels that can be as-
signed to an error code: 

0 = Not a Problem 
1 = Warning 
2 = Fatal 

 
An error with a severity level of AWarning@ does not 
warrant the termination of the unpacker.  An error 
with a severity level of AFatal@ results in the 
termination of the unpacker even if the GRIB2 
message has not been completely unpacked. 

 
Each time the unpacker starts unpacking a new 
section of the GRIB2 message, it places a three 
digit section code representing the section being 
decoded followed by a severity level of A0" into the 
first and second columns, respectively, of the next 
available row of the JER array.  Section codes are 
0 (Section 0), 100 (Section 1), 200 (Section 2), 
300 (Section 3), 400 (Section 4), 500 (Section 5), 
600 (Section 6), 700 (Section 7), and 800 (Section 
8). 

 
When an error is encountered while Adegribbing@ a 
message, the routine detecting the error will place 
the error code followed by its severity level into 
the first and second columns, respectively, of the 
next available row of the JER array. 

 
For example, suppose a call to Aunpkbg@ failed while 
unpacking Section 7 of a GRIB2 message because the 
ANBIT@ calling argument did not have a value 
inclusively contained in the range of 0 to 32.  The 
contents of the JER array upon being returned to 
the caller of the Aunpk_grib2" subroutine would 
appear as follows: 



 UNPK_GRIB2 
 3/15/02    
 
 

 
 -9- 

 
Contents of 

JER 

 
Diagnos-
tic/Error 

Code 

 
Severity 

 
row 1 

 
0 

 
0 

 
row 2 

 
100 

 
0 

 
row 3 

 
200 

 
0 

 
row 4 

 
300 

 
0 

 
row 5 

 
400 

 
0 

 
row 6 

 
500 

 
0 

 
row 7 

 
600 

 
0 

 
row 8 

 
700 

 
0 

 
row 9 

 
8 

 
2 

 
This tells the user that all sections up to Sec-
tion 7 were successfully unpacked.  Note that the 
diagnostic/error code 0 corresponds to Section 0; 
100 corresponds to Section 1; 200 corresponds to 
Section 2; 300 corresponds to Section 3; 400 corre-
sponds to Section 4; 500 corresponds to Section 5; 
600 corresponds to Section 6; and 700 corresponds 
to Section 7.  Also note that since each of these 
section codes is followed by a severity level of 0, 
it means that the unpacking of the GRIB2 message 
has been successful UP TO THAT SECTION.  The error 
code of A8" in row 9 is the error code generated by 
routine Aunpkbg@ indicating the invalid value of the 
ANBIT@ calling argument.  The A2" in the severity 
column indicates that the error is fatal and that 
the decoding of the GRIB2 message is being halted 
with return to the user. 

 
The advantage to using this error handling scheme 
is that the caller of the Aunpk_grib2" routine can 
isolate where the problem occurred (in this exam-
ple, Section 7).  This problem would be very diffi-
cult to find if the user was given a single error 
code upon return from the Aunpk_grib2" routine 
especially since the Aunpkbg@ utility is called 
throughout the entire decoder.  This error handling 
scheme was created to give the user some type of 
error handling/traceback capability in lieu of the 
unpacker actually printing out diagnostic messages. 
 However, if the user desires diagnostic output, 
see the notes corresponding to the AKFILDO@ calling 
argument above.  (OUTPUT) 



 UNPK_GRIB2 
 3/15/02    
 
 

 
 -10- 

 
NDJER -  The number of rows in JER( ).  It is recommended 

that this be set to at least A15".  If this value is 
not set large enough and the JER array fills up, 
the last row of the JER array will be overwritten 
with an error code of A999" with a fatal severity 
level of A2".  This will result in the loss of at 
least two diagnostic codes and their corresponding 
severity levels.  The decoding of the GRIB2 message 
will be halted.  (INPUT) 

 
KJER -  The number of error/diagnostic messages contained 

within the JER array.  Useful for testing for 
errors when program control is returned from the 
Aunpk_grib2" routine back to the calling routine.  
(OUTPUT) 

OUTPUT: 
 

Diagnostic messages will be written to Unit No. AKFILDO@ 
when pk_grib2 has been compiled using the compile options as 
outlined above in the description of the AKFILDO@ calling argu-
ment above. 
 
RESTRICTIONS: 
 

Because of using floating point computations for unpacking, 
exact values of packed integers may not be preserved for very 
large numbers (2**24-1 seems to work ok, but > 2**25-1 does 
not). 
 
NONSYSTEM ROUTINES USED: 

 
See the user associated library. 

 
LANGUAGE: FORTRAN 90 
 
GRIB2 FORMAT: 
 
Nine sections are defined for GRIB2.  Sections in ( ) are op-
tional. 
 
Secti
on 

 
Section Name 

 
Section Contents 

 
0 

 
Indicator Section 

 
AGRIB@, GRIB edition #, message 
length 

 
1 

 
Identification 
Section 

 
Characteristics of all the processed 
data 

 
(2) 

 
(Local Use 
Section) 

 
Additional items for local use 

  
Grid Definition 

 



 UNPK_GRIB2 
 3/15/02    
 
 

 
 -11- 

3 Section Geometry of values 
 
4 

 
Product Definition 
Section 

 
Description of following processed 
data 

 
5 

 
Data Representa-
tion 

 
How the processed data are packed 

 
6 

 
Bit-map Section 

 
Indicator of value being 
present/absent 

 
7 

 
Binary Data Sec-
tion 

 
Binary data values 

 
8 

 
End Section 

 
A7777" 

 
The contents of each section of the GRIB2 message, as well as 

number of octets (bytes) required to store each element in the 
section are detailed in the WMO document FM 92-XII GRIB.  Arrays 
named IS0 - IS7 are used to pass the required input/output values 
into and out of the packer.  Each of these arrays corresponds to a 
section in the GRIB2 message, e.g. array IS0 corresponds to Section 
0.  The element number in each of these AIS@ arrays corresponds to 
the beginning octet number where the data value is stored in the 
section.  So, for example, a value that is stored beginning in 
octet 5 of Section 5 would be placed into element 5 of the IS5 
array. 
 
Section 0: 

IS0(1)  = GRIB name, stored in bytes 1-4 
IS0(7)  = Discipline - master table number, stored in 

byte 7 
IS0(8)  = GRIB edition number, stored in byte 8 
IS0(9)  = Total length of the GRIB message, stored in 

bytes 9-16 
Section 1: 

IS1(1)  = Length of section, stored in bytes 1-4 
IS1(5)  = Number of section, stored in byte 5 
IS1(6)  = ID of originating/generating center, stored in 

bytes 6-7 
IS1(8)  = ID of originating/generating sub-center, stored 

in bytes 8-9 
IS1(10) = GRIB Master tables version number (0), stored in 

byte 10 
IS1(11) = GRIB Local tables version number (0), stored in 

byte 11 
IS1(12) = Significance of reference time stored in byte 12 
IS1(13) = Year (4 digits), stored in bytes 13-14 
IS1(15) = Month, stored in byte 15 
IS1(16) = Day, stored in byte 16 
IS1(17) = Hour, stored in byte 17 
IS1(18) = Minute, stored in byte 18 
IS1(19) = Second, stored in byte 19 



 UNPK_GRIB2 
 3/15/02    
 
 

 
 -12- 

IS1(20) = Production status of processed data in message, 
stored in byte 20 

IS1(21) = Type of processed data in message, stored in 
byte 21 

Section 2: 
IS2(1)  = Length of section, stored in bytes 1-4  
IS2(5)  = Number of section, stored in byte 5 
IS2(6) - IS2(nn) = Local use, stored in bytes 6-nn 

 
Section 3: 

IS3(1)  = Length of section, stored in bytes 1-4 
IS3(5)  = Number of section, stored in byte 5 
IS3(6)  = Source of grid definition, stored in byte 6 
IS3(7)  = Number of data points, stored in bytes 7-10 
IS3(11) = Number of octets for optimal list of numbers 

defining number of points, stored in byte 11 
IS3(12) = Interpretation of list of numbers defining number 

of points, stored in byte 12  
IS3(13) = Grid Definition Template Number, stored in 

bytes 13-14 
IS3(15) - IS3(nn) = Grid Definition Template, stored in 

bytes 15-nn 
Section 4: 

IS4(1)  = Length of section, stored in bytes 1-4  
IS4(5)  = Number of section, stored in byte 5 
IS4(6)  = Number of coordinates values after Template, 

stored in bytes 6-7 
IS4(8)  = Product Definition Template Number, stored in 

bytes 8-9 
IS4(10) -  IS4(nn) = Product Definition Template, stored in 

bytes 10-nn 
Section 5: 

IS5(1)  = Length of section, stored in bytes 1-4 
IS5(5)  = Number of section, stored in byte 5 
IS5(6)  = Number of data points where one or more values 

are specified in Section 7 when a bit map is 
present, total number of data points when a bit 
map is absent, stored in bytes 6-9 

IS5(10) = Data Representation Template Number, stored in 
bytes 10-11 

IS5(12) -  IS5(nn) = Data Representation Template, stored 
in bytes 12-nn 

Section 6: 
IS6(1)  = Length of section, stored in bytes 1-4 
IS6(5)  = Number of section, stored in byte 5 
IS6(6) - IS6(nn) = Bit map stored in bytes 6-nn 

 
Section 7: 

IS7(1)  = Length of section, stored in bytes 1-4 
IS7(5)  = Number of section, stored in byte 5 



 UNPK_GRIB2 
 3/15/02    
 
 

 
 -13- 

IS7(6) - IS7(nn) = Binary Data Values, stored in bytes 6-nn 
 
Section 8: 

IS8(1)  = A7777", stored in bytes 1-4 
 
Local Use Data (Section 2) 
 

GRIB2 provides the capability to preserve and pass along 
information about the gridded data field that the GRIB2 format does 
not provide specific templates or code tables for.  Section 2 is 
provided to contain these local use data.  GRIB2 does not specify 
any restrictions on the format of the data in Section 2, which 
gives much flexibility in determining how the data are stored.  The 
local use data processing scheme described below is the one 
employed by Version 1 of the MDL GRIB2 encoder/decoder software. 
 

Because the format of the data in Section 2 is specific to the 
originating source of the GRIB2 message, this unpacking routine 
will skip over any local use data in Section 2 if it detects that 
it was not packed using Version 1 of the MDL GRIB2 encoder.  MDL 
GRIB2 decoding software examines octet 6 of Section 2 to determine 
if the local use data was packed by the MDL GRIB2 software.  If the 
data format is not recognized, this routine will log an error code 
of A208" and a severity level of A1" in the JER( , ) error handling 
array.  The severity level of A1" implies that this is not a fatal 
error, but it does alert the user that there were data in the Local 
Use Section that were not unpacked. 
 

The MDL GRIB2 encoder/decoder employ a flexible format for 
storing local use data that allows for the storage of both integer 
and floating point groups of values.  In addition to this, the 
local use data are packed using the simple packing method.  Since 
the local use data are broken down into individual groups, the user 
is given the power to specify the decimal scaling factor for each 
group, thus providing the ability to optimize the compression of 
each of the local use data groups based upon the type and precision 
of the data that they contain. 
 

Upon retrieval of the local use data during the unpacking of a 
GRIB2 message that was originally packed using MDL GRIB2 software, 
the integer and floating point local use data will be stored, 
respectively, in the IDAT( ) and RDAT( ) array calling arguments 
(see descriptions of the calling arguments above).  If there are no 
local use data (Section 2 is optional), then the first element of 
the IDAT( ) and RDAT( ) arrays will contain a value of A0" and the 
length of Section 2 will be indicated by a value of A0" in IS2(1). 
 If there are local use data, element 7 of the IS2( ) array will 
contain the total number of groups of local use data with the 
actual data groups being returned in the IDAT( ) and RDAT( ) arrays 
using the following format: 



 UNPK_GRIB2 
 3/15/02    
 
 

 
 -14- 

 
 

Array Element Number 
 

Description of Content 
 

1 
 
Number of values in the first 

group of data (N1). 
 

2 
 
The decimal scale factor that 
was used in packing the first 

group of local use data.  
 

3 to (N1+2) 
 
First group of local use data 

values. 
 

N1+3 
 
Number of values in the second 
group of local use data (N2). 

 
N1+4 

 
The decimal scale factor that 
was used in packing the second 

group of local use data.  
 

(N1+5) to (N1+N2+4) 
 
Second group of local use data 

values. 
 
(K-1)*2+1+N1+N2+...+N(k-1) 

 
Number of values in the Kth 

group of data (Nk) 
 
(K-1)*2+2+N1+N2+...+N(k-1) 

 
The decimal scale factor that 
was used in packing the Kth 

group of data. 
 
(K-1)*2+3+N1+N2+...+N(k-1) 

to 
(K-1)*2+N1+N2+...+N(k-1)+Nk) 

 
The Kth group of local use 

data values. 

 
(K-1)*2+1+N1+N2+...+Nk) 

 
A0" 

A value of A0" where the size 
of the group goes means that 
there is no more local use 

data supplied in this array.  

 
 
Processing GRIB2 messages on Systems with Different Memory 
Architectures 
 
A few extra steps must be taken when using this software on a 
system that uses a Alittle-endian@ memory architecture, where the 
low-order byte of a word represents the word=s starting address.  
The order of bytes in the message is at least implied to be high 
order first and specifically the WMO documentation reads concerning 
floating point, "The numbers are stored with the high order octet 
first.  The sign bit will be the first bit of the first octet.  The 
low order bit of the mantissa will be the last (eighth) bit of the 



 UNPK_GRIB2 
 3/15/02    
 
 

 
 -15- 

fourth octet.  This floating point representation has been chosen 
because it is in common use in modern computer hardware.  Some 
computers use this representation with the order of the octets 
reversed.  They will have to convert the representation, either by 
reversing the octets or by computing the floating point value 
directly..."  PK_GRIB2 uses this "big endian" representation. 
 
The following applies to applications using this GRIB2 decoder when 
decoding a GRIB2 message that is in Abig-endian@ format. 
 
Before commencing to unpack a GRIB2 message on a Alittle-endian@ 
system, it is essential that the bytes in the packed GRIB2 message 
be Aswapped@ to conform to Alittle-endian@ standards.  This should be 
done just before calling the Aunpk_grib2" routine.  A routine, 
named Aunpk_swap@, is provided in the unpacker library to perform 
this byte swapping on the GRIB2 message.  It takes as arguments the 
array containing the packed message and the number of elements in 
that array.  The byte swapping is performed in-situ within this 
array. 
 
The Aunpk_swap@ routine is written in the C language for greater 
efficiency.  Exactly how this routine is linked into the user=s 
executable depends upon the linker that is being used and the 
language that the main routine is written in.  When using a Fortran 
main routine, it is recommended that the user see the Aman@ pages 
supplied with the compiler/linker being used to build the unpacker 
library for information on how to call a AC@ routine from a Fortran 
main routine. 
 
If the user is uncertain of the type of memory architecture of the 
system the GRIB2 message is being unpacked on, then function 
Aunpk_endian@ (also supplied in the unpacker library) should be 
called.  Function Aunpk_endian@ will return a value of ATRUE@ on a 
Abig-endian@ system and a value of AFALSE@ on a Alittle-endian@ 
system.  The following is a portion of a Fortran driver demonstrat-
ing how to use the Aunpk_swap@ and Aunpk_endian@ routines: 
 
      PROGRAM UNPACKER 
C 
      LOGICAL BIG 
      ... 
C       
      BIG=UNPK_ENDIAN() 
C 
      IF(.NOT.BIG)THEN 
         CALL UNPK_SWAP(IPACK,ND5) 
      ENDIF 
C 
 
      CALL UNPK_GRIB2(KFILDO,AIN,IAIN,NX,NY,IDAT,NIDAT,RDAT,NRDAT, 



 UNPK_GRIB2 
 3/15/02    
 
 

 
 -16- 

     1             IS0,NS0,IS1,NS1,IS3,NS3,IS4,NS4,IS5,NS5,IS6,NS6, 
     2             IS7,NS7,IB,IBITMAP,IPACK,ND5,MISSP,XMISSP,MISSS, 
     3             XMISSS,NEW,MINPK,ICLEAN,L3264B,JER,NDJER,KJER) 
C 
      IF(JER(KJER,2).EQ.2)THEN 
         WRITE(*,15) JER(KJER,1) 
 15      FORMAT(//,1X,'FATAL ERROR IN PK_GRIB2 ERROR CODE ',I5) 
         STOP 
      ENDIF 
C      
      ... 
 
Error Codes 
 
The following is a list of all of the possible diagnostic and error 
return codes that can be returned by this routine.  An attempt has 
been made to give the numeric codes a meaningful appearance that 
will aid the user of this GRIB2 decoder in identifying which part 
of the GRIB2 software is generating the error condition.  For 
example, errors encountered while unpacking Section 3 of the GRIB2 
message will generally have a value ranging from 301 to 399 while 
those encountered while unpacking Section 4 of the GRIB2 message 
will generally have a value ranging from 401 to 499.  Not all error 
codes represent Afatal@ circumstances that require the termination 
of the unpk_grib2 routine.  Along with the actual value of an error 
code, severity information is also returned to the user indicating 
whether the error represents a Afatal@ condition or is provided just 
for diagnostic purposes. 
 
 

0  =  A good return value  (all routines) 
6  =  LOCN  is not in the range 1 to ND5  (unpkbg.f, 

unpkoo.f, unpkpo.f, unpkps.f) 
7  =  IPOS is not in range 1 to L3264B (unpkbg.f, 

unpkcmbm.f, unpklxbm.f, unpkoo.f, unpkpo.f, 
unpkps.f) 

8  =  NBIT not in range 0 to 32  (unpkbg.f, unpkcmbm.f, 
unpklxbm.f, unpkoo.f, unpkpo.f, unpkps.f) 

9  =  NDX is not large enough to furnish the bits necessary 
to accommodate NXY values starting at the values 
LOCN and IPOS  (unpklxbm.f) 

18  =  Unrecognized missing value code in IMISSING  
(unpkcmbm.f) 

100 = No Section A1" on a new product  (unpk_sect1.f) 
102 = IS1( ) has not been dimensioned large enough to con-

tain the entire template (unpk_sect1.f) 
199 = Unexpected end of message  (unpk_sect1.f) 
202 = IS2( ) has not been dimensioned large enough to con-

tain the entire template (unpk_sect2.f) 



 UNPK_GRIB2 
 3/15/02    
 
 

 
 -17- 

204 = The number of local use data groups specified in octet 
6 of Section 2 is A0" (unpk_sect2.f) 

206 = Invalid data type indicator value in Section 2  
(unpk_sect2.f) 

208 = The data in Section 2 has an unrecognized format.  It 
has been skipped and not unpacked (non-fatal error 
return)  (unpk_sect2.f) 

299 = Unexpected end of message (unpk_sect2.f) 
300 = IS3(5) does not indicate Section 3 (unpk_sect3.f, 

unpk_grib2.f) 
302 = IS3( ) has not been dimensioned large enough to con-

tain the entire template (unpk_sect3.f, 
unpk_azimuth.f, unpk_cylinder.f, unpk_equator.f, 
unpk_lambert.f, unpk_mercator, unpk_orthographic.f, 
unpk_polster.f) 

303 = Unsupported grid template indicated by IS3(13)   
(unpk_azimuth.f, unpk_cylinder.f, unpk_equator.f, 
unpk_lambert.f, unpk_mercator.f, 
unpk_orthographic.f, unpk_polster.f, unpk_sect3.f) 

307 = Unrecognized or unsupported shape of Earth code in 
IS3(15) (unearth.f, unpk_sect3.f, unpk_cylinder.f, 
unpk_equator.f, unpk_lambert.f, unpk_mercator.f, 
unpk_orthographic.f, unpk_polster.f) 

399 = Unexpected end of message  (unpk_sect3.f) 
401 = IS4(5) does not indicate Section 4 (unpk_sect4.f) 
402 = IS4( ) has not been dimensioned large enough to con-

tain the template (unpk_sect4.f, unpk_temp40.f, 
unpk_temp41.f, unpk_temp430.f, unpk_temp48.f, 
unpk_temp420.f) 

403 = Not the correct template or unsupported template 
(unpk_sect4.f, unpk_temp41.f, unpk_temp430.f, 
unpk_temp48.f, unpk_temp420.f) 

499 = Unexpected end of message (unpk_sect4.f) 
501 = IS5(5) does not indicate Section 5 (unpk_sect5.f) 
502 = IS5( ) has not been dimensioned large enough to con-

tain the template (unpk_sect5.f) 
508 = Unrecognized or unsupported type of packing in IS5(10) 

(unpk_sect5.f) 
509 = Unrecognized type of data in IS5(21) (unpk_sect5.f) 
599 = Unexpected end of message (unpk_sect5.f) 
601 = IS5(5) does not indicate Section 6 (unpk_sect6.f) 
602 = IS6( ) has not been dimensioned large enough to con-

tain the entire template (unpk_sect6.f) 
605 = Dimension ND2X3 not large enough for IB(NX*NY) 

(unpk_sect6.f) 
608 = Bit-map indicator in IS6(6) not in correct range 

(unpk_sect6.f) 
699 = Unexpected end of message (unpk_sect6.f) 
701 = IS7(5) does not indicate Section 7 (unpk_sect7.f) 



 UNPK_GRIB2 
 3/15/02    
 
 

 
 -18- 

702 = IS7( ) has not been dimensioned large enough to con-
tain the entire template (unpk_sect7.f) 

705 = ND2X3 is too small of a dimension to allow for proper 
processing of the grid (unpk_cmplx.f, unpksecdif.f) 

708 = Invalid unpacking option  (unpk_refer.f) 
709 = Unsupported order of differencing (unpk_cmplx.f) 
799 = Unexpected end of message (unpk_sect7.f) 
999 = The JER( ) array is full (unpk_trace.f) 
1002 = IS0( ) has not been dimensioned large enough to 

contain the entire template (unpk_sect0.f) 
1010 = The beginning of GRIB message was not found 

(unpk_sect0.f) 
1011 = Message must be GRIB2 version 2 (unpk_sect0.f) 

 
Version Control: 
 

This Version 1.1 has been modified from Version 1.0 only 
1) to add more diagnostic messages, 2) to improve readability 
and comments, and 3) to correct any deficiencies found through 
more rigorous testing.  GRIB offers many options, only a portion 
of which are supported by PK_GRIB; even so, the number of combi-
nations is large and some errors could still remain. 


