Crude Oil and Natural Gas Resource Development

Semisubmersible drilling rig in the Gulf of Mexico. Source: U.S. Department of Energy.

Figure 5.1 Crude Oil and Natural Gas Resource Development Indicators

Rotary Rigs in Operation, Monthly

Wells Drilled, Monthly

Wells Drilled by Type

${ }^{\text {a }}$ Federal and State Jurisdiction waters of the Gulf of Mexico. ${ }^{\text {b }}$ All onshore.

Active Well Service Rig Count, Monthly
3,000-
$2,500-\frac{2008}{2000} \quad 200$

500-

Footage Drilled, Monthly
35-

7-

Maximum U.S. Active Seismic Crew Counts

Web Page: http://www.eia.doe.gov/emeu/mer/resource.html. Sources: Tables 5.1-5.3.

Table 5.1 Crude Oil and Natural Gas Drilling Activity Measurements
(Number of Rigs)

${ }^{\text {a }}$ Rotary rigs in operation are reported weekly. Monthly data are averages of 4or 5 -week reporting periods, not calendar months. Multi-month data are averages of the reported data over the covered months, not averages of the weekly data. Annual data are averages over 52 or 53 weeks, not calendar years. Published data are rounded to the nearest whole number.
b Sum of rigs drilling for crude oil, rigs drilling for natural gas, and other rigs (not shown) drilling for miscellaneous purposes, such as service wells, injection wells, and stratigraphic tests.
c The number of rigs doing true workovers (where tubing is pulled from the well), or doing rod string and pump repair operations, and that are, on average, crewed
and working every day of the month.
NA=Not available.
Note: Geographic coverage is the 50 States and the District of Columbia.
Web Page: See http://www.eia.doe.gov/emeu/mer/resource.html for all available data beginning in 1973.

Sources: - Rotary Rigs in Operation: By Site-Baker Hughes, Inc., Houston, Texas, Rotary Rigs Running-by State. By Type-Baker Hughes, Inc., Houston, Texas, weekly phone recording. - Active Well Service Rig Count: Weatherford International, Ltd., Houston, Texas.

Table 5.3 Maximum U.S. Active Seismic Crew Counts
(Number of Crews)

	48 States, Onshore				48 States, Offshore ${ }^{\text {a }}$				Alaska ${ }^{\text {b }}$				Total
	Dimensions ${ }^{\text {c }}$			Total ${ }^{\text {d }}$	Dimensions ${ }^{\text {c }}$			Total ${ }^{\text {d }}$	Dimensions ${ }^{\text {c }}$			Total ${ }^{\text {d }}$	
	2	3	4		2	3	4		2	3	4		
2000 August	4	40	1	45	7	7	0	15	0	1	0	1	61
2001 August	8	32	1	41	7	8	0	15	0	0	0	0	56
2002 August	7	26	0	33	8	7	0	15	1	1	0	2	50
2003 August	8	22	0	30	7	4	0	11	1	1	0	2	43
2004 January	8	25	0	33	5	5	0	10	0	0	0	0	43
February	8	27	0	35	5	5	0	10	0	0	0	0	45
March	8	27	0	35	5	5	0	10	0	0	0	0	45
April	9	27	0	36	5	4	0	9	0	0	0	0	45
May	9	26	0	35	5	4	0	9	0	0	0	0	44
June	9	30	0	39	4	4	0	8	0	2	0	2	49
July	8	30	0	38	4	4	0	8	0	2	0	2	48
August	8	31	0	39	4	4	0	8	0	2	0	2	49
September	8	32	0	40	4	2	0	6	0	2	0	2	48
October	8	34	0	42	2	2	0	4	0	2	0	2	48
November	9	33	0	42	1	4	0	5	0	2	0	2	49
December	9	32	0	41	3	4	0	7	0	2	0	2	50
2005 January	8	33	0	41	5	4	0	9	0	2	0	2	52
February	8	34	0	42	5	4	0	9	0	2	0	2	53
March	6	33	0	39	6	6	0	12	0	0	0	0	51
April	8	30	0	38	6	6	0	12	0	0	0	0	50
May	8	34	0	42	7	6	0	13	0	0	0	0	55
June	9	35	0	44	7	5	0	12	0	1	0	1	57
July	8	34	0	42	6	5	0	11	0	1	0	1	54
August	8	35	0	43	6	5	0	11	0	1	0	1	55
September	7	37	0	44	6	5	0	11	0	1	0	1	56
October	6	39	0	45	6	5	0	11	0	1	0	1	57
November	5	40	0	45	6	5	0	11	0	1	0	1	57
December	6	40	0	46	6	5	0	11	0	1	0	1	58
2006 January	5	38	0	43	6	5	0	11	0	1	0	1	55
February	5	39	0	44	6	6	0	12	0	1	0	1	57
March	4	42	0	46	6	6	0	12	0	1	0	1	59
April	4	42	0	46	5	6	0	11	0	1	0	1	58
May	4	42	0	46	5	6	0	11	0	1	0	1	58
June	9	35	0	44	7	5	0	12	0	1	0	1	57
July	5	51	0	56	4	5	0	9	0	1	0	1	66
August	4	49	0	53	3	5	0	8	0	1	0	1	62
September	4	51	0	55	2	5	0	7	0	1	0	1	63
October	5	51	0	56	2	5	0	7	0	1	0	1	64
November	5	51	0	56	3	5	0	8	0	1	0	1	65
December	5	50	0	55	3	5	0	8	0	1	0	1	64
2007 January	3	51	0	54	3	5	0	8	0	1	0	1	63
February	3	51	0	54	3	5	0	8	0	1	0	1	63
March	4	55	0	59	3	5	0	8	0	1	0	1	68
April	4	55	0	59	4	6	1	11	0	1	0	1	71
May	3	55	0	58	4	6	1	11	0	1	0	1	70
June	3	55	0	58	3	6	1	10	0	1	0	1	69
July	2	57	0	59	3	6	1	10	0	0	0	0	69
August	2	56	0	58	4	8	1	13	0	0	0	0	71
September	3	58	0	61	3	8	1	12	0	0	0	0	73
October	4	60	0	65	3	8	1	12	0	0	0	0	77
November	4	60	0	65	3	10	1	14	0	0	0	0	79
December	5	54	0	60	4	10	1	15	0	0	0	0	75
2008 January	6	55	0	61	4	10	1	15	0	0	0	0	76
February	6	55	0	61	4	11	1	16	0	0	0	0	77
March	6	54	0	60	3	11	1	15	0	0	0	0	75
April	4	53	0	57	3	11	1	15	0	0	0	0	72
May	4	54	0	58	3	11	1	15	0	0	0	0	73
June	2	56	0	58	3	11	1	15	0	0	0	0	73
July	2	58	0	60	3	8	1	12	0	0	0	0	72
August	2	58	0	60	3	8	1	12	0	0	0	0	72

[^0]are prone to (except, of course, along the outer faces of the cube). Four dimensional (4D) eflection seismic surveying is the exact repetition of a 3D survey at two or more time intervals. The primary application of 4D is mapping the movement of fluid interfaces in producing oil and gas reservoirs.
d Includes crews with unknown survey dimension.
Notes: - A "seismic crew" is a group of people, of varying number, engaged in a seismic surveying job. - "48 States" is the United States excluding Alaska and Hawaii. • Data are the fifteenth. When semi-monthly values differ for the month the larger of the two values is hown here. Consequently, this table reflects the maximum number of crews at work at any time during the month. Web Page:
beginning in March 2000. Source: World Geophysical News, IHS Energy Group, Denver, CO, used with permission.

Crude Oil and Natural Gas Resource Development

Note. Crude Oil and Natural Gas Exploratory and Development Wells. Three well types are considered in the Monthly Energy Review (MER) drilling statistics: "completed for crude oil," "completed for natural gas," and "dry hole." Wells that productively encounter both crude oil and natural gas are categorized as "completed for crude oil." Both development wells and exploratory wells (new field wildcats, new pool tests, and extension tests) are included in the statistics. All other classes of wells drilled in connection with the search for producible hydrocarbons are excluded. If a lateral is drilled at the same time as the original hole it is not counted separately, but its footage is included.
Prior to the March 1985 MER, drilling statistics consisted of
completion data for the above types and classes of wells as reported to the American Petroleum Institute (API) during a given month. Due to time lags between the date of well completion and the date of completion reporting to the API, as-reported well completions proved to be an inaccurate indicator of drilling activity. During 1982, for example, as-reported well completions rose, while the number of actual completions fell. Consequently, the drilling statistics published since the March 1985 MER are Energy Information Administration (EIA) estimates produced by statistically imputing well counts and footage based on the partial data available from the API. These estimates are subject to continuous revision as new data, some of which pertain to earlier months and years, become available. Additional information about the EIA estimation methodology may be found in "Estimating Well Completions," a feature article published in the March 1985 MER.

[^0]: a Federal and State Jurisdiction waters of the Gulf of Mexico. b All onshore
 C In two-dimensional (2D) reflection seismic surveying both the sound source and the sound detectors (numbering up to a hundred or more per shot) are moved along a straight line. The resultant product can be thought of as a vertical sonic cross-section of the subsurface beneath the survey line. It is constructed by summing many compressional (pressure) wave reflections from the various sound source and sound detector locations at the halfway sound path points seismic surveying the sound don dep (numbering ing). in three-dimensional (3D) reflection an area and the sound source is moved from location to location through the area. The resultant product can be thought of as a cube of common depth point stacked reflections. Advantages over 2D include the additional dimension, the fact that many more reflections are available for stacking at each point, which provides greatly improved resolution of subsurface features, and elimination of the "ghost" or "side swipe" reflections from nearby offline features that 2D surveys

