## Understanding Top and Its Backgrounds A Phenomenological Overview

Stephen Mrenna

Computing Division (FNAL) and MCTP (University of Michigan) with thanks to P. Skands and T. Sjostrand

Top Mass Summit 2005



### Counting

- Primary analysis based on:
  - $S{\equiv}\,``LL''$  event generator <code>Isajet</code> without coherence and using Feynman-Field hadronization
  - B $\equiv$ Tree-level VECBOS + data
  - Supplemented with Herwig for cross checks and detailed kinematic analysis of top decays

• 
$$M_t = 176 \pm 8 \pm 10$$
 GeV,  $\sigma = 6.8^{+3.6}_{-2.4}$  pb

• 
$$(S+B)/B = (27/7 = 3.9, 23/15 = 1.5, 6/1.3 = 4.6)$$
  
=  $(SVX, SLT, \ell\ell)$ 

- The convincing evidence was the kinematic reconstruction
- Discovery "easy", interpretation harder

## Top Properties & Single-Top Non-Top Cocktail: CDF PRD with 162 pb<sup>-1</sup>

2^-2 2^0 2^2 2^4 Single t Number of Jets Number of Jets 4 Single t 3 Other 2 Wcc Type of Background QCD Number of Jets Wcc Wc Other Wc Wbb Mistags 3 Number of Jets Number of Jets 2 Single t Other QCD Mistag Whh Wcc 4 QCD 3 Wc 2 Wbb Mistags 2^-2 2^0 2^2 2^4 2^-2 2^0 2^2 2^4 2^-2 2^0 2^2 2^4 Expected Events Expected Events in 162 ipb

**Top Background Summary** 

Complicated; Correlated: is it right? can it be improved?



2

< ロ > < 同 > < 回 > < 回 >

## ISR/FSR basics: Parton Shower Approach

 $2 \rightarrow n = (2 \rightarrow 2) \oplus \text{ISR} \oplus \text{FSR}$ 



 $\label{eq:FSR} \begin{array}{l} \mbox{FSR} = \mbox{Final-State Rad.;} \\ \mbox{timelike shower} \\ Q_i^2 \sim m^2 > 0 \mbox{ decreasing} \\ \mbox{ISR} = \mbox{Initial-State Rad.;} \\ \mbox{spacelike shower} \\ Q_i^2 \sim -m^2 > 0 \mbox{ increasing} \end{array}$ 

 $2 \rightarrow 2$  = hard scattering (on-shell):

$$\sigma = \iiint \mathrm{d}x_1 \,\mathrm{d}x_2 \,\mathrm{d}\hat{t} \,f_i(x_1, Q^2) \,f_j(x_2, Q^2) \,\frac{\mathrm{d}\hat{\sigma}_{ij}}{\mathrm{d}\hat{t}}$$

Shower evolution is viewed as a probabilistic process, which occurs with unit total probability: the cross section is not directly affected, but indirectly it is, via the changed event shape

# "Missing Diagrams"

- parton shower "generates Feynman diagrams" like a fixed-order calculation
- only includes those enhanced in the soft or collinear limit [DGLAP]
- may exclude some hard effects ( $\sim Q_F$ )
  - analyzing diagrams is gauge dependent!
- Where does the difference become important?



- hard momentum flows through propagators
- No singularity



(Truncated) rate for one gluon emission is:

$$\mathcal{P}_{q 
ightarrow qg} \sim \int rac{dQ^2}{Q^2} \int dz d\phi rac{lpha_s}{2\pi} rac{4}{3} rac{1+z^2}{1-z} \ \sim lpha_s \ln\left(rac{Q^2_{
m max}}{Q^2_{
m min}}
ight) rac{8}{3} \ln\left(rac{1-z_{
m min}}{1-z_{
m max}}
ight)$$

 $\mathcal{P}_{q \to qg} \Rightarrow \alpha_s \ln^2$ Rate for *n* emissions:

$$\mathcal{P}_{q \to q+ng} \sim \mathcal{P}_{q \to qg}^n \sim \alpha_s^n \ln^{2n}$$

NLL includes also:  $\alpha_s^n \ln^{2n-1}$ Part of NLL is included in PS through:

- energy-momentum conservation
- coherent gluon emission ("angular ordered")
- $\alpha_s(cp_T^2)$
- $\bullet~$  "All order"  $\sim~$  "Fixed order"

**□ > < = > <** 

3

$$\alpha_s(m_t) \simeq \alpha_s(p_T) \ln^2\left(\frac{m_t}{p_T}\right) \Rightarrow p_T = 70 \text{ GeV}$$

## OLD

### $\sim$ NEW Pythia

PYTHIA:  $Q^2 = m^2$  HERWIG:  $Q^2 \sim E^2 \theta^2$  ARIADNE:  $Q^2 = p_1^2$ 



large mass first  $\Rightarrow$  "hardness" ordered coherence brute force covers phase space ME merging simple  $q \rightarrow q \overline{q}$  simple not Lorentz Invariant no stop/restart ISB:  $m^2 \rightarrow -m^2$ 



large angle first ⇒ hardness not ordered coherence inherent gaps in coverage ME merging messy  $q \rightarrow q\overline{q}$  simple not Lorentz Invariant no stop/restart ISR:  $\theta \rightarrow \theta$ 



large  $p_{\perp}$  first  $\Rightarrow$  "hardness" ordered coherence inherent

covers phase space ME merging simple  $g \rightarrow q \overline{q} mess y$ Lorentz invariant can stop/restart ISR: more messy

 $\Rightarrow$  Partons are different things in different generators  $\Leftarrow$ 



з

## Generators describe data well



Parton level differences are "artificial"

Stephen Mrenna Top Mass Summit

æ

## Other NLO Issues

#### Kidonakis, et al.



#### Is there a large correlation between NLO and PS uncertainty?

- No, mostly top is produced at threshold and dominated by soft and virtual
- soft kinematics is important; this is the root of theoretical uncertainty
  - 1PI = kinematics of top recoil at threshold
  - PIM = kinematics of top pair recoil at threshold
- variations  $\alpha_s(cp_T^2)$  affect detailed shapes  $(H_T?)$



17 ▶

## MC@NLO

#### Advantages

correct NLO normalisation and the first hard jet right

#### Disadvantages

shower ansatz and hence the resummation procedure cannot be varied

- be alert for observables and cuts which are sensitive to this, e.g. peak of the tt
   *t p*<sub>T</sub> spectrum
- "matched sample" with a K-factor is at the same level of precision, if not better, for *distributions*
- need to vary the shower ansatz in a well-considered way
- http://home.fnal.gov/~skands/slides/high-shat\_aug05.ppt
  - shower gets the first hard jet correct to a good approximation
  - agrees with a first look at matched tt,ttj,ttjj

3

▲□ ► < □ ► </p>

## "Jet" showering/fragmentation/hadronization

b-parton showering  $\sim$  light parton except near shower cutoff

- "Large" virtuality involved in top decay
- Mapping back to parton level is more complicated for b-jets
- like looking at a parton distribution at two different scales

must tune generator fragmentation

ullet  $\Rightarrow$  *not* the same as NLO (NLL?) fits

Caveat

- generators fit copious LEP data "correctly"
- we do not have a 'proof' of jet universality
- e.g., breakdown from color reconnections



#### Method 2

Monte Carlo ratio R = (W + b - jets)/(W + jets)

Measure W + jets (no b-tag)

 $data(W+b-jets) = R \times data(W+jets)$ 

Wcj/Wbb from Monte Carlo

Compare to predictions from MCFM

Campbell & Ellis (see also Campbell & Huston)

#### MLM Method

Parton shower and hadronization are essential for studying b-jets

- Parton shower W+Npartons but reject emissions that are too hard
- Build up *inclusive* or *exclusive* samples
- *R* supplemented by phenomenological factor 1.5

**□ > < = > <** 

 $\delta R/R \sim$ 25-30%

| Graph                        | Cross Sect(fb) |
|------------------------------|----------------|
| Sum (Wbb)                    | 8.934          |
| Sum (Wjj)                    | 1061.627       |
| $ug \rightarrow e^+vedg$     | 327.810        |
| $udx { ightarrow} e^+ vegg$  | 257.060        |
| $gdx { ightarrow} e^+ veuxg$ | 137.300        |
| $dxg \rightarrow e^+ veuxg$  | 48.591         |
| $uux \rightarrow e^+veuxd$   | 47.425         |
| $udx \rightarrow e^+veddx$   | 36.644         |
| $gu { ightarrow} e^+ vedg$   | 34.445         |
| $udx{\rightarrow}e^+veuux$   | 29.816         |
|                              |                |

 $R \times 1.5 = 1.3\%$  (MLM = 1.4%)

 $\langle R \rangle$  roughly the same

Many different topologies

Dominant ones not  $q\bar{q}$ 

$$P_{qq}(z) = \frac{1}{2}(z^2 + (1-z)^2)$$

Different topologies parton shower and hadronize differently

Many effects have to be modelled well to have a reliable prediction



## Double Counting (Need for Matching)

A 2  $\rightarrow$  *n* graph can be "simplified" to 2  $\rightarrow$  2 in different ways:



Conflict: theory derivations often assume virtualities strongly ordered; interesting physics often in regions where this is not true!



- **→** → **→** 

## Fact. and Renorm. Scales

#### Factorization

Factorization Theorem allows for a separation of the hard process from the soft/collinear physics of f(x) and D(z) at the scale  $Q_F$ .

#### Renormalization

Renormalization introduces a residual scale dependence  $Q_R$  typical of the average virtuality.



- Assume  $Q_F = Q_R$ , normalize rate to data
- Choice matters, especially if  $p_{Tj}$  enters observable
- $H_T = \sum_i p_{Ti}$
- PS implies that  $p_{Tj}$  (for ISR, relative  $p_{Tjj}$  for FSR) is a good choice, but note dependence  $\alpha_s(cp_T^2)$
- CKKW-like matching gives a prescription for choosing scales that seems quite reasonable (see SM and P. Richardson)
  - $\bullet\,$  Since choice represents  $\sim\,$  average virtuality of internal lines, it is close to BLM prescription

# Matrix Element-Parton Shower Matching SM, PR JHEP 0405:040,2004



#### **Testing Different Predictions**

- Matching scheme needed to make inclusive predictions with hard emissions
- Pseudoshower Method (ME-PS) reweights matrix elements to look like parton showers where they should. Motivated by Catani et al., but more flexible and tuned to Pythia, Herwig, etc.







Matched Datasets have a systematically larger rate and different shape

Truncated Datasets contain only  $Wb\bar{b} + Wb\bar{b}j$ 

HO topologies modify shape



-2

э



Wjj Matched Datasets have less variation with cutoff

Matched normalization here is smaller (no skipped Sudakov)

/∄ ▶ ∢ ∃ ▶

Stiffer shape (HO topologies)



2

#### MCFM vs MEPS





Matched Datasets have consistently steeper slopes (note: MCFM steeper than LO)

Truncated Datasets contain only  $Wb\bar{b} + Wb\bar{b}j$ 

Slopes more consistent with MCFM

< 同 ▶

-2

э