

Uncertainties on top quark mass due to modeling

For DØ collaboration Regina Demina University of Rochester Top mass workshop at FNAL, 10/11/05

M_t =169.5±4.4 GeV/c² JES=1.034±0.034

Systematics summary

Source of uncertainty	$DM_t (GeV/c^2)$
B-jet energy scale	+1.32-1.25
Signal modeling (gluons rad)	0.34
Background modeling	0.32
Signal fraction	+0.5-0.17
QCD contribution	0.67
MC calibration	0.38
trigger	0.08
PDF's	0.07
Total	+1.7-1.6
0/11/05 Regina Demina. Top mass worksh	od at FNAL

B-jet energy scale

Relative data/MC b/light jet energy scale ratio •fragmentation: +-0.71 GeV/c² \rightarrow different amounts of p⁰, different p⁺ momentum spectrum -> fragmentation uncertainties lead to uncertainty in b/light JES ratio

compare MC samples with different fragmentation models: Peterson fragmentation with $e_{\rm b}$ =0.00191 **Bowler fragmentation with r**_t=0.69 •calorimeter response: +0.85 -0.75 GeV/c² uncertainties in the h/e response ratio + charged hadron energy fraction of b jets > that of light jets → corresponding uncertainty in the b/light JES ratio

•Difference in p_T spectrum of b-jets and jets from W-decay: 0.7 GeV/c^2 10/11/05

B and light quark jet kinematics

- On average b-jets contain 2 more soft pions
- Pion momenta are softer for b-jets

Charged hadron energy fraction

- For jets with p_T>20GeV/c
- Light-quark jet: $<F_{charged} >= 0.58$

• b-quark jet:

<F_{charged}>=0.52

Single pion response

Relative b-to-light Response Uncertainty

Jet pT range	$\frac{\bar{f}_q}{\bar{f}_p} - 1(\%)$	$\Delta \bar{R^h}(\%)$	Total (%)
15 GeV/c < E _t < 35 GeV/c	24	+12.7 -10.9	+3.0 -3.6
35 GeV/c < E _t < 55 GeV/c	15	+10.5 -10.5	+1.6 -1.6
55 GeV/c < E _t < 75 GeV/c	10	+10.3 -10.3	+1.0 -1.0
75 GeV/c < E _t < 95 GeV/c	9	+10.2 -10.7	+0.9 -1.0

Result for inclusive jet sample ($E_T > 20 \text{GeV}$) = +1.5% -1.3%

Gluon radiation

- The effect is reduced by
 - Requiring four and only four jets in the final state
 - High P_T cut on jets
- Yet in ~20% of the events there is at least one jet that is not matched (DR(parton-jet)<0.5) to top decay products
 - These events are interpreted as background by ME method
- We study this systematic by examining ALPGEN ttj sample and varying its relative fraction between 0 and 30% (verified on our data by examining the fraction of events with the 5th jet)
- Final effect on top mass 0.34 GeV/c²

Approach #1: weighted sum

- Add processes straight up, weighted by cross section*selection efficiency:
 - Add contributions of tt0j, tt1j, tt2j
 - Double counting because tt0j includes radiation by Pythia

	tt0j	tt1j	tt2j
eff, %	13.9%	19.5%	23.3%
sigma, pb	6	2.5	0.56
sigma*eff	0.834	0.4875	0.13048
relative weight	57%	34%	9%

THE UNIVERSIT

•

OF ROCHEST

2.5

3.5

2.5

Approach #3: exclusive production

• tt0j for W+4jet bin, tt1j for W+5j, tt2j for W+6j

Relative conribution of jet multiplicities

Verification with data

Can constraint the fraction of ttj by measuring the fraction of F=N(Nj>=5)/N(Nj>=4)

In systematics study we vary between pure tt and weighted sum

10/11/05

Regina Demina, Top mass workshop at FNAL

Signal/Background Modeling

. QCD background: +-0.67 GeV/c²

Rederive calibration including QCD events from data (lepton anti-isolation) (note: sample statistics limited) can be reduced in the future .<u>W+jets modeling</u>: +-0.32 GeV/c² study effect of a different factorization scale for W+jets events (<p_{T,j}>² instead of m_W² + Sp_{T,j}²) .<u>PDF uncertainty</u>: +-0.07 GeV/c² CTEQ6M provides systematic variations of the PDFs reweight ensembles to compare CTEQ6M with its systematic variations (by default the measurement uses CTEQ5L throughout: use a LO matrix element, and for consistency with simulation)

Conclusions

- Model dependent systematics on top mass include
 - Difference in b and light JES
 - Fragmentation
 - Charged fraction
 - Gluon radiation (x-tra jet modeling)
 - Factorization scale of W+jets production
 - PDF's